Cargnoni Fausto, Nishibori Eiji, Rabiller Philippe, Bertini Luca, Snyder G Jeffrey, Christensen Mogens, Gatti Carlo, Iversen Bo Brummerstadt
CNR-ISTM, Instituto di Scienze e Tecnologie Molecolari via C. Golgi 19, 20133 Milano, Italy.
Chemistry. 2004 Aug 20;10(16):3861-70. doi: 10.1002/chem.200400327.
The experimental electron density of the high-performance thermoelectric material Zn4Sb3 has been determined by maximum entropy (MEM) analysis of short-wavelength synchrotron powder diffraction data. These data are found to be more accurate than conventional single-crystal data due to the reduction of common systematic errors, such as absorption, extinction and anomalous scattering. Analysis of the MEM electron density directly reveals interstitial Zn atoms and a partially occupied main Zn site. Two types of Sb atoms are observed: a free spherical ion (Sb3-) and Sb2(4-) dimers. Analysis of the MEM electron density also reveals possible Sb disorder along the c axis. The disorder, defects and vacancies are all features that contribute to the drastic reduction of the thermal conductivity of the material. Topological analysis of the thermally smeared MEM density has been carried out. Starting with the X-ray structure ab initio computational methods have been used to deconvolute structural information from the space-time data averaging inherent to the XRD experiment. The analysis reveals how interstitial Zn atoms and vacancies affect the electronic structure and transport properties of beta-Zn4Sb3. The structure consists of an ideal A12Sb10 framework in which point defects are distributed. We propose that the material is a 0.184:0.420:0.396 mixture of A12Sb10, A11BCSb10 and A10BCDSb10 cells, in which A, B, C and D are the four Zn sites in the X-ray structure. Given the similar density of states (DOS) of the A12Sb10, A11BCSb10 and A10BCDSb10 cells, one may electronically model the defective stoichiometry of the real system either by n-doping the 12-Zn atom cell or by p-doping the two 13-Zn atom cells. This leads to similar calculated Seebeck coefficients for the A12Sb10, A11BCSb10 and A10BCDSb10 cells (115.0, 123.0 and 110.3 microV K(-1) at T=670 K). The model system is therefore a p-doped semiconductor as found experimentally. The effect is dramatic if these cells are doped differently with respect to the experimental electron count. Thus, 0.33 extra electrons supplied to either kind of cell would increase the Seebeck coefficient to about 260 microV K(-1). Additional electrons would also lower sigma, so the resulting effect on the thermoelectric figure of merit of Zn4Sb3 challenges further experimental work.
通过对短波长同步辐射粉末衍射数据进行最大熵(MEM)分析,确定了高性能热电材料Zn4Sb3的实验电子密度。由于减少了诸如吸收、消光和反常散射等常见系统误差,发现这些数据比传统单晶数据更准确。对MEM电子密度的分析直接揭示了间隙Zn原子和一个部分占据的主要Zn位点。观察到两种类型的Sb原子:自由球形离子(Sb3-)和Sb2(4-)二聚体。对MEM电子密度的分析还揭示了沿c轴可能存在的Sb无序。这种无序、缺陷和空位都是导致材料热导率急剧降低的特征。已对热模糊的MEM密度进行了拓扑分析。从X射线结构出发,采用从头算计算方法从XRD实验固有的时空数据平均中解卷积结构信息。分析揭示了间隙Zn原子和空位如何影响β-Zn4Sb3的电子结构和输运性质。该结构由一个理想的A12Sb10框架组成,其中分布有点缺陷。我们提出该材料是A12Sb10、A11BCSb10和A10BCDSb10晶胞的0.184:0.420:0.396混合物,其中A、B、C和D是X射线结构中的四个Zn位点。鉴于A12Sb10、A11BCSb10和A10BCDSb10晶胞的态密度(DOS)相似,可以通过对12-Zn原子晶胞进行n型掺杂或对两个13-Zn原子晶胞进行p型掺杂,对实际系统的缺陷化学计量进行电子建模。这导致A12Sb10、A11BCSb10和A10BCDSb10晶胞的计算塞贝克系数相似(在T = 670 K时分别为115.0、123.0和110.3 μV K(-1))。因此,该模型系统是实验中发现的p型掺杂半导体。如果这些晶胞相对于实验电子数进行不同的掺杂,效果会很显著。因此,向任何一种晶胞提供0.33个额外电子会使塞贝克系数增加到约260 μV K(-1)。额外的电子也会降低电导率σ,因此对Zn4Sb3热电品质因数的最终影响对进一步的实验工作提出了挑战。