Suppr超能文献

从表面肌电信号估计肌肉纤维传导速度的方法。

Methods for estimating muscle fibre conduction velocity from surface electromyographic signals.

作者信息

Farina D, Merletti R

机构信息

Dipartimento di Elettronica, Laboratorio di Ingegneria del Sistema Neuromuscolare, Politecnico di Torino, Torino, Italy.

出版信息

Med Biol Eng Comput. 2004 Jul;42(4):432-45. doi: 10.1007/BF02350984.

Abstract

The review focuses on the methods currently available for estimating muscle fibre conduction velocity (CV) from surface electromyographic (EMG) signals. The basic concepts behind the issue of estimating CV from EMG signals are discussed. As the action potentials detected at the skin surface along the muscle fibres are, in practice, not equal in shape, the estimation of the delay of propagation (and thus of CV) is not a trivial task. Indeed, a strictly unique definition of delay does not apply in these cases. Methods for estimating CV can thus be seen as corresponding to specific definitions of the delay of propagation between signals of unequal shape. The most commonly used methods for CV estimation are then reviewed. Together with classic methods, recent approaches are presented. The techniques are described with common notations to underline their relationships and to highlight when an approach is a generalisation of a previous one or when it is based on new concepts. The review identifies the difficulties of CV estimation and underlines the issues that should be considered by the investigator when selecting a particular method and detection system for assessing muscle fibre CV. The many open issues in CV estimation are also presented.

摘要

本综述聚焦于目前可用于从表面肌电图(EMG)信号估计肌纤维传导速度(CV)的方法。讨论了从EMG信号估计CV问题背后的基本概念。由于沿肌纤维在皮肤表面检测到的动作电位在实际中形状并不相同,传播延迟(进而CV)的估计并非易事。实际上,在这些情况下并不适用严格唯一的延迟定义。因此,估计CV的方法可被视为对应于形状不等的信号之间传播延迟的特定定义。然后综述了最常用的CV估计方法。除了经典方法外,还介绍了近期的方法。用通用符号描述这些技术,以强调它们之间的关系,并突出一种方法是先前方法的推广还是基于新概念。本综述确定了CV估计的困难,并强调了研究者在选择用于评估肌纤维CV的特定方法和检测系统时应考虑的问题。还介绍了CV估计中许多未解决的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验