Mélançon Eric, Bénard Pierre
Institut de recherche sur l'hydrogène, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, C. P. 500, Trois-Rivières, Québec, Canada, G9A 5H7.
Langmuir. 2004 Aug 31;20(18):7852-9. doi: 10.1021/la036446l.
To investigate the contribution of geometry on the adsorption process, we present a theoretical study of the low-pressure physisorption of hydrogen on isolated nanotubes and nanotube bundles through the second virial coefficient, B(AS), computed classically with an uncorrugated adsorption potential. The optimal nanotube bundle geometry at low pressure for a Lennard-Jones adsorption potential is obtained by studying the second virial coefficient, B(AS), for variable radius or bundle lattice constant. The most favorable bundle adsorption sites at low pressures and temperatures are identified for typical bundle structures and the relative contribution of interstitial sites relative to other sites is discussed as a function of temperature and pressure. The Boyle temperature behavior for the B(AS) virial coefficient is also discussed as a function of radius for isolated nanotubes. For a given nanostructure, the maximum pressure of applicability of the B(AS) approach, below which the adsorption isotherm is linear, is estimated as a criterion which depends on temperature.
为了研究几何结构对吸附过程的贡献,我们通过经典计算的无波纹吸附势下的第二维里系数(B(AS)),对氢气在孤立纳米管和纳米管束上的低压物理吸附进行了理论研究。通过研究可变半径或管束晶格常数下的第二维里系数(B(AS)),得到了 Lennard-Jones 吸附势在低压下的最佳纳米管束几何结构。针对典型的管束结构,确定了在低压和低温下最有利的管束吸附位点,并讨论了间隙位点相对于其他位点的相对贡献随温度和压力的变化。还讨论了孤立纳米管的(B(AS))维里系数的玻意耳温度行为随半径的变化。对于给定的纳米结构,估计了(B(AS))方法适用的最大压力,低于该压力吸附等温线为线性,该压力是一个取决于温度的判据。