Bicout D J, Kats E
Institut Laue-Langevin, 6 rue Jules Horowitz, B.P. 156, 38042 Grenoble, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):010902. doi: 10.1103/PhysRevE.70.010902. Epub 2004 Jul 28.
This paper deals with the two-state (opening-closing of base pairs) model used to describe the fluctuation dynamics of a single bubble formation. We present an exact solution for the discrete and finite size version of the model that includes end effects and derive analytic expressions of the correlation function, survival probability, and lifetimes for the bubble relaxation dynamics. It is shown that the continuous and semi-infinite limit of the model becomes a good approximation to an exact result when aN <<1, where N is bubble size and a, the ratio of opening to closing rates of base pairs, is the control parameter of DNA melting.
本文探讨了用于描述单个气泡形成波动动力学的双态(碱基对打开 - 关闭)模型。我们给出了该模型离散且有限尺寸版本的精确解,其中包括端部效应,并推导了气泡弛豫动力学的相关函数、存活概率和寿命的解析表达式。结果表明,当aN <<1时,该模型的连续和半无限极限成为精确结果的良好近似,其中N是气泡大小,a是碱基对打开与关闭速率之比,是DNA解链的控制参数。