Suppr超能文献

使用解析直接相关函数对非均匀范德瓦尔斯流体进行建模。

Modeling inhomogeneous van der Waals fluids using an analytical direct correlation function.

作者信息

Tang Yiping, Wu Jianzhong

机构信息

Honeywell Process Solutions, 300-250 York Street, London, Ontario, Canada N6A 6K2.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011201. doi: 10.1103/PhysRevE.70.011201. Epub 2004 Jul 23.

Abstract

Rosenfeld's perturbative method [J. Chem. Phys. 98, 8126 (1993)]] for constructing the Helmholtz energy functional of classical systems is applied to studying inhomogeneous Lennard-Jones fluids, in which the key input-the bulk direct correlation function-is obtained from the first-order mean-spherical approximation (FMSA) [J. Chem. Phys. 118, 4140 (2003)]]. Preserving its high fidelity at the bulk limit, the FMSA shows stable and satisfactory performance for a variety of inhomogeneous Lennard-Jones fluids including those near hard walls, inside slit pores, and around colloidal particles. In addition, the inhomogeneous FMSA reproduces reliably the radial distribution function at its bulk limit. The FMSA is found, in particular, much better than the mean-field theory for fluids near hard surfaces. Unlike alternative non-mean-field approaches, the FMSA is computationally as efficient as the mean-field theory, free of any numerical determination of structure information, weight functions, or empirical parameters.

摘要

罗森菲尔德的微扰方法[《化学物理杂志》98, 8126 (1993)]用于构建经典系统的亥姆霍兹自由能泛函,该方法被应用于研究非均匀的 Lennard-Jones 流体,其中关键输入量——体相直接相关函数——是通过一阶平均球近似(FMSA)[《化学物理杂志》118, 4140 (2003)]得到的。FMSA 在体相极限处保持了高保真度,对于各种非均匀的 Lennard-Jones 流体,包括靠近硬壁、在狭缝孔内以及胶体颗粒周围的流体,都表现出稳定且令人满意的性能。此外,非均匀 FMSA 在体相极限处可靠地再现了径向分布函数。特别是,对于靠近硬表面的流体,发现 FMSA 比平均场理论要好得多。与其他非平均场方法不同,FMSA 在计算上与平均场理论一样高效,无需对结构信息、权重函数或经验参数进行任何数值确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验