Kaidel J, Brack M
Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004;70(1 Pt 2):016206. doi: 10.1103/PhysRevE.70.016206. Epub 2004 Jul 15.
In nonintegrable Hamiltonian systems with mixed phase space and discrete symmetries, sequences of pitchfork bifurcations of periodic orbits pave the way from integrability to chaos. In extending the semiclassical trace formula for the spectral density, we develop a uniform approximation for the combined contribution of pitchfork bifurcation pairs. For a two-dimensional double-well potential and the familiar Hénon-Heiles potential, we obtain very good agreement with exact quantum-mechanical calculations. We also consider the integrable limit of the scenario which corresponds to the bifurcation of a torus from an isolated periodic orbit. For the separable version of the Hénon-Heiles system we give an analytical uniform trace formula, which also yields the correct harmonic-oscillator SU(2) limit at low energies, and obtain excellent agreement with the slightly coarse-grained quantum-mechanical density of states.
在具有混合相空间和离散对称性的不可积哈密顿系统中,周期轨道的叉形分岔序列为从可积性到混沌的转变铺平了道路。在扩展谱密度的半经典迹公式时,我们针对叉形分岔对的组合贡献开发了一种统一近似。对于二维双阱势和常见的亨农 - 海尔斯势,我们得到了与精确量子力学计算非常吻合的结果。我们还考虑了该情形的可积极限,它对应于从孤立周期轨道分岔出一个环面。对于亨农 - 海尔斯系统的可分离版本,我们给出了一个解析统一迹公式,该公式在低能量时也能给出正确的谐振子SU(2)极限,并且与稍微粗粒化的量子力学态密度取得了极好的吻合。