Suppr超能文献

Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis.

作者信息

Imler Stacy M, Doshi Ashish N, Levenston Marc E

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA.

出版信息

Osteoarthritis Cartilage. 2004 Sep;12(9):736-44. doi: 10.1016/j.joca.2004.05.007.

Abstract

OBJECTIVE

To compare the actions of fibroblast growth factor-basic (bFGF), insulin-like growth factor-I (IGF-I), platelet derived growth factor-AB (PDGF-AB), and transforming growth factor-beta 1 (TGF-beta1) on bovine meniscus tissue explants with and without static mechanical compression.

DESIGN

Meniscus tissue explants were cultured in a serum-free environment supplemented with an individual growth factor (1) over a range of concentrations for 4 days, (2) at a single concentration for 2-14 days, and (3) at a single concentration for 4 days coupled with graded levels of static compression. Explants were analyzed for accumulation of newly synthesized proteoglycan and total protein as measured by 35S-sulfate and 3H-proline incorporation, respectively.

RESULTS

Over the range of chosen concentrations, TGF-beta1 was the most potent stimulator of both protein and proteoglycan production, whereas bFGF was the least effective stimulator. Over a 2-week period for all four growth factors, the stimulation of proteoglycan production was sustained while there was no stimulation of protein production during this period. The superposition of static mechanical compression inhibited matrix production in the presence of each anabolic factor, with comparable inhibition relative to uncompressed controls for all factors.

CONCLUSIONS

The growth factors chosen exhibited an anabolic effect on the meniscus tissue explants, encouraging matrix production and deposition. The addition of static mechanical compression produced comparable relative inhibition of matrix production for each growth factor, suggesting that static compression and growth factors may modulate meniscal fibrochondrocyte biosynthesis via distinct pathways.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验