Ward Bryan A, Morocho Alan, Kandil Abdullah, Galinsky Raymond E, Flockhart David A, Desta Zeruesenay
Indiana University School of Medicine, Department of Medicine/Division of Clinical Pharmacology, 1001 West 10th street, OPD W 320, Indianapolis, Indiana, USA.
Br J Clin Pharmacol. 2004 Sep;58(3):277-87. doi: 10.1111/j.1365-2125.2004.02156.x.
To confirm the identity of the major metabolites of domperidone and to characterize the cytochrome P450s (CYPs) involved in their formation.
Human liver microsomes (HLMs) were used to characterize the kinetics of domperidone metabolism and liquid chromatography-mass spectrometry to identify the products. Isoform-specific chemical inhibitors, correlation analysis and expressed human CYP genes were used to identify the CYPs involved in domperidone oxidation.
In HLMs, domperidone underwent hydroxylation to form 5-hydroxydomperidone (MIII) and N-dealkylation to form 2,3-dihydro-2-oxo-1H-benzimidazole-1-propionic acid (MI) and 5-chloro-4-piperidinyl-1,3-dihydro-benzimidazol-2-one (MII). The formation of all three metabolites (n = 4 HLMs) followed apparent Michaelis-Menten kinetics. The mean Km values for MI, MII and MIII formation were 12.4, 11.9, and 12.6 micro m, respectively. In a panel of HLMs (n = 10), the rate of domperidone (5 microm and 50 microm) metabolism correlated with the activity of CYP3A (r > 0.94; P < 0.0001). Only ketoconazole (1 microm) (by 87%) and troleandomycin (50 microm) (by 64%) inhibited domperidone (5 microm) metabolism in HLMs. Domperidone (5 and 50 microm) hydroxylation and N-dealkylation was catalyzed by expressed CYP3A4 at a higher rate than the other CYPs. CYP1A2, 2B6, 2C8 and 2D6 also hydroxylated domperidone
CYP3A-catalyzed N-dealkylation and aromatic hydroxylation are the major routes for domperidone metabolism. The drug would be expected to demonstrate highly variable bioavailability due to hepatic, and possibly intestinal first-pass metabolism after oral administration. Increased risk of adverse effects might be anticipated during concomitant administration with CYP3A inhibitors, as well as decreased efficacy with inducers of this enzyme.
确认多潘立酮主要代谢产物的身份,并鉴定参与其形成的细胞色素P450(CYP)。
用人肝微粒体(HLMs)来表征多潘立酮代谢的动力学,并采用液相色谱 - 质谱法鉴定产物。使用同工酶特异性化学抑制剂、相关性分析和表达的人CYP基因来鉴定参与多潘立酮氧化的CYP。
在HLMs中,多潘立酮发生羟基化形成5 - 羟基多潘立酮(MIII),并发生N - 脱烷基化形成2,3 - 二氢 - 2 - 氧代 - 1H - 苯并咪唑 - 1 - 丙酸(MI)和5 - 氯 - 4 - 哌啶基 - 1,3 - 二氢 - 苯并咪唑 - 2 - 酮(MII)。所有三种代谢产物的形成(n = 4个HLMs)均遵循表观米氏动力学。MI、MII和MIII形成的平均Km值分别为12.4、11.9和12.6 μmol。在一组HLMs(n = 10)中,多潘立酮(5 μmol和50 μmol)的代谢速率与CYP3A的活性相关(r > 0.94;P < 0.0001)。仅酮康唑(1 μmol)(降低87%)和醋竹桃霉素(50 μmol)(降低64%)抑制HLMs中多潘立酮(5 μmol)的代谢。多潘立酮(5 μmol和50 μmol)的羟基化和N - 脱烷基化由表达的CYP3A4催化,其速率高于其他CYP。CYP1A2、2B6、2C8和2D6也可使多潘立酮羟基化。
CYP3A催化的N - 脱烷基化和芳香族羟基化是多潘立酮代谢的主要途径。由于口服给药后肝脏及可能的肠道首过代谢,预计该药物的生物利用度会有很大差异。与CYP3A抑制剂同时给药时,可能会增加不良反应的风险,与该酶的诱导剂同时使用时疗效可能会降低。