Suppr超能文献

使用自回归重复性测定日模型预测牛奶、脂肪和蛋白质的日产奶量及泌乳期产奶量

Prediction of daily and lactation yields of milk, fat, and protein using an autoregressive repeatability test day model.

作者信息

Vasconcelos J, Martins A, Petim-Batista M F, Colaço J, Blake R W, Carvalheira J

机构信息

CIBIO/ICETA, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Portugal.

出版信息

J Dairy Sci. 2004 Aug;87(8):2591-8. doi: 10.3168/jds.S0022-0302(04)73384-6.

Abstract

We evaluated the accuracy of an autoregressive multiple-lactation test day (ATD) model to predict missing test day yields of milk, fat, and protein to obtain cumulative 305-d records for cows with incomplete or in-progress lactations. The data consisted of more than one million observations of daily yields on test days in the first 3 lactations of over 75,000 Portuguese Holstein cows. Differences between actual (estimates from complete lactations using the test interval method) and ATD-predicted 305-d yields were negligible and smaller than those predicted by the test interval method. The ATD procedure tended to slightly underestimate cumulative lactation yields, whereas the test interval method substantially overestimated them. Smaller differences obtained by the ATD procedure resulted in less biased estimates of lactation yield, which also implies greater accuracy. As expected, the correlations between actual and predicted lactation yields increased with the number of test days from 0.831 to 0.997. Average correlations (by parity) between actual and ATD-predicted yields ranged from 0.977 to 0.984. Correlations between actual test day yields and corresponding predicted yields exceeded 0.5 for up to 7 time-intervals from the last test day yield used to predict cumulative yield of projected lactations. These correlations indicate the good predictive ability of the ATD method. From a producer's viewpoint, these advantages underwrite management because most on-farm selection decisions are based on the producing abilities of cows. Implementation of ATD methodology does not require special computing capability and is easily transferable to the farm level.

摘要

我们评估了一种自回归多泌乳期测定日(ATD)模型预测牛奶、脂肪和蛋白质缺失测定日产量的准确性,以获取泌乳期不完整或仍在进行的奶牛的305天累计记录。数据包括超过75000头葡萄牙荷斯坦奶牛前三个泌乳期测定日的100多万条日产奶量观测值。实际值(使用测定间隔法从完整泌乳期得出的估计值)与ATD预测的305天产量之间的差异可忽略不计,且小于测定间隔法预测的差异。ATD程序往往会略微低估累计泌乳产量,而测定间隔法则会大幅高估。ATD程序得出的差异较小,这意味着泌乳产量估计的偏差较小,也意味着准确性更高。正如预期的那样,实际和预测泌乳产量之间的相关性随着测定天数的增加从0.831提高到0.997。实际产量与ATD预测产量之间的平均相关性(按胎次)在0.977至0.984之间。从用于预测预计泌乳期累计产量的最后一个测定日产量起,多达7个时间间隔内,实际测定日产量与相应预测产量之间的相关性超过0.5。这些相关性表明了ATD方法具有良好的预测能力。从生产者的角度来看,这些优势有利于管理,因为大多数农场内的选择决策都是基于奶牛的生产能力。实施ATD方法不需要特殊的计算能力,并且很容易应用到农场层面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验