Maltecca C, Bagnato A, Weigel K A
VSA Department, University of Milan, Veterinary Medicine Via Celoria no 2, 20133 Milan, Italy.
J Dairy Sci. 2004 Aug;87(8):2599-605. doi: 10.3168/jds.S0022-0302(04)73385-8.
Our objective was to assess the predictive ability of different methodologies for international genetic evaluation of milk yield and to determine the magnitude of differences in the resulting sire estimated breeding values (EBV). Data included first lactation records of 16,057,335 Holstein-sired cows from 237,049 herds in 14 countries. Meta-analysis of national sire EBV using the multiple-trait across country evaluation (MACE) procedure, single-trait analysis of individual animal performance records, multiple-trait analysis of individual animal performance records, and borderless herd cluster model were compared by assessing predictive ability. Comparisons were based on root mean square error of sire EBV from a subset of records from cows calving between 1990 and 1995 and corresponding pedigree indices for sires that received their first genetic evaluations in 1996 or 1997. The number of bulls first evaluated in 1996 or 1997 that were in common between the top 25, 100, and 250 for pedigree index and the top 25, 100, and 250 for EBV were also determined for each method. Average root mean square error of prediction was 10.3 kg2 for the borderless single-trait model, 6.6 kg2 for the borderless herd cluster model, and 6.7 kg2 for both the borderless multiple-trait model and meta-analysis of national sire EBV using MACE. The mean numbers of common bulls among the top 25, 100, and 250, respectively, when selected on pedigree index and subsequent EBV were 11, 48, and 154 for the borderless single-trait model; 16, 66, and 176 for the borderless multiple-trait model; 16, 66, and 178 for the borderless herd cluster model; and 15, 66, and 178 for meta-analysis of national sire EBV using MACE. Rank correlations between sire EBV from different models ranged from 0.77 for the single-trait borderless model and the meta-analysis using MACE to 0.92 for the borderless multiple-trait and the borderless herd cluster models.
我们的目标是评估不同方法对产奶量进行国际遗传评估的预测能力,并确定所得父本估计育种值(EBV)的差异程度。数据包括来自14个国家237,049个牛群的16,057,335头荷斯坦公牛后代的头胎产奶记录。通过评估预测能力,比较了使用多性状跨国评估(MACE)程序对国家父本EBV进行的荟萃分析、个体动物生产性能记录的单性状分析、个体动物生产性能记录的多性状分析以及无边界牛群聚类模型。比较基于1990年至1995年期间产犊母牛记录子集的父本EBV的均方根误差以及1996年或1997年首次接受遗传评估的父本的相应系谱指数。还针对每种方法确定了1996年或1997年首次评估的公牛中,系谱指数排名前25、100和250的公牛与EBV排名前25、100和250的公牛的共同数量。无边界单性状模型的平均预测均方根误差为10.3 kg²,无边界牛群聚类模型为6.6 kg²,无边界多性状模型和使用MACE对国家父本EBV进行的荟萃分析均为6.7 kg²。当根据系谱指数和随后的EBV进行选择时,无边界单性状模型在前25、100和250名中共同公牛的平均数量分别为11、48和154头;无边界多性状模型为16、66和176头;无边界牛群聚类模型为16、66和178头;使用MACE对国家父本EBV进行的荟萃分析为15、66和178头。不同模型的父本EBV之间的秩相关系数范围为,单性状无边界模型与使用MACE进行的荟萃分析之间为0.77,无边界多性状模型与无边界牛群聚类模型之间为0.92。