Lit Louis M, Doelken Peter, Mayo Paul H
Department of Pulmonary and Critical Care Medicine, Beth Israel Medical Center, New York, NY, USA.
Respir Care. 2004 Sep;49(9):1022-8.
Calculation of total inspiratory resistance (Rtot) for patients on ventilatory support is typically based on measurement of airflow velocity and airway opening pressure during end-inspiratory occlusion by the inspiratory valve in the ventilator. Systematic error is introduced into Rtot measurements because the inspiratory valve closes over a period of time (not instantaneously, so gas continues to flow into the circuit while the valve is shutting) and because the circuit tubing is a distensible compartment between the occluding valve and the respiratory system. The Rtot-measurement error can be minimized with a rapidly-shutting occlusion valve positioned at the airway opening, or, alternatively, by mathematical correction that accounts for the valve-closure period and circuit tubing characteristics.
In a bench study we measured Rtot with the Puritan Bennett 7200 and 840 ventilators (using the inspiratory valves that are built into those ventilators) and compared those measurements to measurements made with a rapidly-shutting valve at the airway opening. We deemed the rapid-occlusion-valve measurements the best available (benchmark) values. We also studied the closure characteristics of the ventilators' inspiratory occlusion valves and created equations for mathematical correction of Rtot values measured with those valves.
Compared to the benchmark measurements, the measurements from the Puritan Bennett 7200 averaged 23.2% relative error and 2.6 cm H2O/L/s absolute error. Measurements from the Puritan Bennett 840 averaged 7.3% relative error and 1.0 cm H2O/L/s absolute error. Mathematical correction for the circuit tubing and valve-closure time reduced the average relative and absolute error to 3.0% and 0.4 cm H2O/L/s, respectively, for the Puritan Bennett 7200, and to 4.5% and 0.3 cm H2O/L/s, respectively, for the Puritan Bennett 840.
The Puritan Bennett 840 measures Rtot more accurately than the Puritan Bennett 7200. Our equations to mathematically correct Rtot measurements made with the PB7200 and PB840 are useful in settings where very accurate Rtot measurements are necessary.
对于接受通气支持的患者,总吸气阻力(Rtot)的计算通常基于在呼吸机吸气阀进行吸气末阻断期间对气流速度和气道开口压力的测量。由于吸气阀在一段时间内关闭(并非瞬间关闭,因此在阀门关闭时气体仍会继续流入回路),并且回路管道是阻塞阀与呼吸系统之间的可扩张腔室,所以Rtot测量中会引入系统误差。使用位于气道开口处的快速关闭的阻塞阀,或者通过考虑阀门关闭时间和回路管道特性的数学校正,可以将Rtot测量误差降至最低。
在一项实验台研究中,我们使用伟康7200和840呼吸机(使用内置的吸气阀)测量Rtot,并将这些测量结果与在气道开口处使用快速关闭阀进行的测量结果进行比较。我们将快速阻塞阀测量结果视为最佳可用(基准)值。我们还研究了呼吸机吸气阻塞阀的关闭特性,并创建了用于对使用这些阀门测量的Rtot值进行数学校正的方程。
与基准测量相比,伟康7200的测量结果平均相对误差为23.2%,绝对误差为2.6 cmH₂O/L/s。伟康840的测量结果平均相对误差为7.3%,绝对误差为1.0 cmH₂O/L/s。对回路管道和阀门关闭时间进行数学校正后,伟康7200的平均相对误差和绝对误差分别降至3.0%和0.4 cmH₂O/L/s,伟康840的平均相对误差和绝对误差分别降至4.5%和0.3 cmH₂O/L/s。
伟康840测量Rtot比伟康7200更准确。我们用于对PB7200和PB840测量的Rtot进行数学校正的方程,在需要非常准确的Rtot测量的情况下很有用。