Zani Brett G, Bohlen H Glenn
Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., MS 426, Indianapolis, IN 46202, USA.
Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H89-95. doi: 10.1152/ajpheart.00644.2004. Epub 2004 Aug 26.
NaCl hyperosmolarity increases intestinal blood flow during food absorption due in large part to increased NO production. We hypothesized that in vivo, sodium ions enter endothelial cells during NaCl hyperosmolarity as the first step to stimulate an increase in intestinal endothelial NO production. Perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature at rest and under hyperosmotic conditions, 330 and 380 mosM, respectively, before and after application of bumetanide (Na(+)-K(+)-2Cl(-) cotransporter inhibitor) or amiloride (Na(+)/H(+) exchange channel inhibitor). Suppressing amiloride-sensitive Na(+)/H(+) exchange channels diminished hypertonicity-linked increases in vascular [NO], whereas blockade of Na(+)-K(+)-2Cl(-) channels greatly suppressed increases in vascular [NO] and intestinal blood flow. In additional experiments we examined the effect of sodium ion entry into endothelial cells. We proposed that the Na(+)/Ca(2+) exchanger extrudes Na(+) in exchange for Ca(2+), thereby leading to the calcium-dependent activation of endothelial nitric oxide synthase (eNOS). We blocked the activity of the Na(+)/Ca(2+) exchanger during 360 mosM NaCl hyperosmolarity with KB-R7943; complete blockade of increased vascular [NO] and intestinal blood flow to hyperosmolarity occurred. These results indicate that during NaCl hyperosmolarity, sodium ions enter endothelial cells predominantly through Na(+)-K(+)-2Cl(-) channels. The Na(+)/Ca(2+) exchanger then extrudes Na(+) and increases endothelial Ca(2+). The increase in endothelial Ca(2+) causes an increase in eNOS activity, and the resultant increase in NO increases intestinal arteriolar diameter and blood flow during NaCl hyperosmolarity. This appears to be the major mechanism by which intestinal nutrient absorption is coupled to increased blood flow.
氯化钠高渗在食物吸收过程中会增加肠道血流量,这在很大程度上归因于一氧化氮(NO)生成增加。我们推测,在体内,氯化钠高渗时钠离子进入内皮细胞是刺激肠道内皮细胞一氧化氮生成增加的第一步。在静息状态以及分别处于330和380毫渗摩尔(mosM)的高渗条件下,在应用布美他尼(钠-钾-2氯同向转运体抑制剂)或阿米洛利(钠/氢交换通道抑制剂)前后,测定体内大鼠肠道微血管周围的一氧化氮浓度([NO])和血流量。抑制阿米洛利敏感的钠/氢交换通道可减少与高渗相关的血管[NO]增加,而阻断钠-钾-2氯通道则极大地抑制了血管[NO]和肠道血流量的增加。在额外的实验中,我们研究了钠离子进入内皮细胞的作用。我们提出钠/钙交换体将钠离子排出以交换钙离子,从而导致内皮型一氧化氮合酶(eNOS)的钙依赖性激活。我们用KB-R7943在360 mosM氯化钠高渗期间阻断钠/钙交换体的活性;高渗引起的血管[NO]增加和肠道血流量增加被完全阻断。这些结果表明,在氯化钠高渗期间,钠离子主要通过钠-钾-2氯通道进入内皮细胞。然后钠/钙交换体排出钠离子并增加内皮细胞内钙离子浓度。内皮细胞内钙离子浓度增加导致eNOS活性增加,由此产生的一氧化氮增加在氯化钠高渗期间增加肠道小动脉直径和血流量。这似乎是肠道营养物质吸收与血流量增加相耦合的主要机制。