Meier C, Beswick J A
Laboratoire Collisions, Agregats et Reactivite, UMR 5589, IRSAMC, Universite Paul Sabatier, 31062 Toulouse, France.
J Chem Phys. 2004 Sep 8;121(10):4550-8. doi: 10.1063/1.1774159.
The process of decoherence of vibrational states of I2 in a dense helium environment is studied theoretically using the mixed quantum/classical method based on the Bohmian formulation of quantum mechanics [E. Gindensperger, C. Meier, and J. A. Beswick, J. Chem. Phys. 113, 9369 (2000)]. Specifically, the revival of vibrational wave packets is a quantum phenomena which depends sensitively on the coherence between the vibrational states excited by an ultrafast laser pulse. Its detection by a pump-probe setup as a function of rare gas pressure forms a very accurate way of detecting vibrational dephasing. Vibrational revivals of I2 in high pressure rare gas environments have been observed experimentally, and the very good agreement with the simulated spectra confirms that the method can accurately describe decoherence processes of quantum systems in interaction with an environment.
利用基于量子力学玻姆表述的混合量子/经典方法,从理论上研究了在稠密氦环境中I₂振动状态的退相干过程[E. 金登斯珀格、C. 迈尔和J. A. 贝斯维克,《化学物理杂志》113, 9369 (2000)]。具体而言,振动波包的复苏是一种量子现象,它敏感地依赖于由超快激光脉冲激发的振动状态之间的相干性。通过泵浦-探测装置将其作为稀有气体压力的函数进行检测,形成了一种非常精确的检测振动退相的方法。在实验中已经观察到I₂在高压稀有气体环境中的振动复苏,并且与模拟光谱的非常好的一致性证实了该方法可以准确描述量子系统与环境相互作用时的退相干过程。