Touyz R M, Schiffrin E L
Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, 110 Pine Avenue West, Montreal, Quebec, H2W 1R7, Canada.
Histochem Cell Biol. 2004 Oct;122(4):339-52. doi: 10.1007/s00418-004-0696-7. Epub 2004 Aug 26.
Reactive oxygen species (ROS), including superoxide (*O2-), hydrogen peroxide (H2O2), and hydroxyl anion (OH-), and reactive nitrogen species, such as nitric oxide (NO) and peroxynitrite (ONOO-), are biologically important O2 derivatives that are increasingly recognized to be important in vascular biology through their oxidation/reduction (redox) potential. All vascular cell types (endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts) produce ROS, primarily via cell membrane-associated NAD(P)H oxidase. Reactive oxygen species regulate vascular function by modulating cell growth, apoptosis/anoikis, migration, inflammation, secretion, and extracellular matrix protein production. An imbalance in redox state where pro-oxidants overwhelm anti-oxidant capacity results in oxidative stress. Oxidative stress and associated oxidative damage are mediators of vascular injury and inflammation in many cardiovascular diseases, including hypertension, hyperlipidemia, and diabetes. Increased generation of ROS has been demonstrated in experimental and human hypertension. Anti-oxidants and agents that interrupt NAD(P)H oxidase-driven *O2- production regress vascular remodeling, improve endothelial function, reduce inflammation, and decrease blood pressure in hypertensive models. This experimental evidence has evoked considerable interest because of the possibilities that therapies targeted against reactive oxygen intermediates, by decreasing generation of ROS and/or by increasing availability of antioxidants, may be useful in minimizing vascular injury and hypertensive end organ damage. The present chapter focuses on the importance of ROS in vascular biology and discusses the role of oxidative stress in vascular damage in hypertension.
活性氧(ROS),包括超氧阴离子(O2-)、过氧化氢(H2O2)和羟阴离子(OH-),以及活性氮物质,如一氧化氮(NO)和过氧亚硝酸盐(ONOO-),是具有生物学重要性的氧衍生物,通过其氧化/还原(氧化还原)电位在血管生物学中日益被认为是重要的。所有血管细胞类型(内皮细胞、血管平滑肌细胞和外膜成纤维细胞)都主要通过细胞膜相关的NAD(P)H氧化酶产生活性氧。活性氧通过调节细胞生长、凋亡/失巢凋亡、迁移、炎症、分泌和细胞外基质蛋白产生来调节血管功能。氧化还原状态失衡,即促氧化剂超过抗氧化能力,会导致氧化应激。氧化应激和相关的氧化损伤是许多心血管疾病(包括高血压、高脂血症和糖尿病)中血管损伤和炎症的介质。在实验性高血压和人类高血压中均已证实活性氧生成增加。抗氧化剂和阻断NAD(P)H氧化酶驱动的O2-产生的药物可使高血压模型中的血管重塑消退、改善内皮功能、减轻炎症并降低血压。由于针对活性氧中间体的疗法通过减少活性氧的产生和/或增加抗氧化剂的可用性可能有助于最小化血管损伤和高血压靶器官损伤,这一实验证据引起了相当大的关注。本章重点介绍活性氧在血管生物学中的重要性,并讨论氧化应激在高血压血管损伤中的作用。