Suppr超能文献

用于实时冠状动脉磁共振成像中提高信噪比的自适应平均法。

Adaptive averaging for improved SNR in real-time coronary artery MRI.

作者信息

Sussman Marshall S, Robert Normand, Wright Graham A

机构信息

Department of Medical Biophysics, Sunnybrook Health Science Centre, University of Toronto, Toronto, ON M5G 2N2, Canada.

出版信息

IEEE Trans Med Imaging. 2004 Aug;23(8):1034-45. doi: 10.1109/TMI.2004.828677.

Abstract

A technique has been developed for combining a series of low signal-to-noise ratio (SNR) real-time magnetic resonance (MR) images to produce composite images with high SNR and minimal artifact in the presence of motion. The main challenge is identifying a set of real-time images with sufficiently small systematic differences to avoid introducing significant artifact into the composite image. To accomplish this task, one must: 1) identify images identical within the limits of noise; 2) detect systematic errors within such images with sufficient sensitivity. These steps are achieved by evaluating the correlation coefficient (CC) between regions in prospective images and a template containing the anatomy of interest. Images identical within noise are selected by comparing the measured CC values to the theoretical distribution expected due to noise. Sensitivity for systematic error depends on the SNR of the CC (=SNR(CCmax)), which in turn depends on the noise, and the template size and structure. By varying the template size, SNR(CCmax) may be altered. Experiments on phantoms and coronary artery images demonstrate that the SNR(CCmax) necessary to avoid introducing significant artifact varies with the target composite SNR. The future potential of this technique is demonstrated on high-resolution (approximately 0.9 mm), reduced field-of-view real-time coronary images.

摘要

已开发出一种技术,可将一系列低信噪比(SNR)的实时磁共振(MR)图像进行合并,以在存在运动的情况下生成具有高SNR且伪影最小的合成图像。主要挑战在于识别一组系统差异足够小的实时图像,以避免在合成图像中引入显著伪影。为完成此任务,必须做到:1)识别在噪声范围内相同的图像;2)以足够的灵敏度检测此类图像中的系统误差。这些步骤通过评估前瞻性图像中的区域与包含感兴趣解剖结构的模板之间的相关系数(CC)来实现。通过将测量的CC值与因噪声而预期的理论分布进行比较,选择噪声范围内相同的图像。系统误差的灵敏度取决于CC的SNR(=SNR(CCmax)),而这又取决于噪声以及模板大小和结构。通过改变模板大小,可以改变SNR(CCmax)。对体模和冠状动脉图像的实验表明,避免引入显著伪影所需的SNR(CCmax)随目标合成SNR而变化。该技术在高分辨率(约0.9毫米)、缩小视野的实时冠状动脉图像上展示了未来的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验