Suppr超能文献

使用非刚性图像配准分析标记磁共振图像中的三维心肌运动。

Analysis of 3-D myocardial motion in tagged MR images using nonrigid image registration.

作者信息

Chandrashekara Raghavendra, Mohiaddin Raad H, Rueckert Daniel

机构信息

Visual Information Processing Group, Department of Computing, Imperial College, 180 Queen's Gate, London SW7 2AZ, U.K.

出版信息

IEEE Trans Med Imaging. 2004 Oct;23(10):1245-50. doi: 10.1109/TMI.2004.834607.

Abstract

Tagged magnetic resonance imaging (MRI) is unique in its ability to noninvasively image the motion and deformation of the heart in vivo, but one of the fundamental reasons limiting its use in the clinical environment is the absence of automated tools to derive clinically useful information from tagged MR images. In this paper, we present a novel and fully automated technique based on nonrigid image registration using multilevel free-form deformations (MFFDs) for the analysis of myocardial motion using tagged MRI. The novel aspect of our technique is its integrated nature for tag localization and deformation field reconstruction using image registration and voxel based similarity measures. To extract the motion field within the myocardium during systole we register a sequence of images taken during systole to a set of reference images taken at end-diastole, maximizing the normalized mutual information between the images. We use both short-axis and long-axis images of the heart to estimate the full four-dimensional motion field within the myocardium. We also present validation results from data acquired from twelve volunteers.

摘要

标记磁共振成像(MRI)在无创成像体内心脏运动和变形方面独具特色,但限制其在临床环境中应用的一个根本原因是缺乏从标记MR图像中获取临床有用信息的自动化工具。在本文中,我们提出了一种基于使用多级自由形式变形(MFFD)的非刚性图像配准的新颖且完全自动化的技术,用于使用标记MRI分析心肌运动。我们技术的新颖之处在于其利用图像配准和基于体素的相似性度量进行标记定位和变形场重建的集成特性。为了提取收缩期心肌内的运动场,我们将收缩期拍摄的一系列图像与舒张末期拍摄的一组参考图像进行配准,使图像之间的归一化互信息最大化。我们使用心脏的短轴和长轴图像来估计心肌内完整的四维运动场。我们还展示了从12名志愿者获取的数据的验证结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验