Suppr超能文献

酿酒酵母群体中DUP240多基因家族的扩增与收缩

Expansion and contraction of the DUP240 multigene family in Saccharomyces cerevisiae populations.

作者信息

Leh-Louis Véronique, Wirth Bénédicte, Potier Serge, Souciet Jean-Luc, Despons Laurence

机构信息

Laboratoire de Microbiologie et de Génétique, FRE 2326 Université Louis Pasteur/Centre National de la Recherche Scientifique, Institut de Botanique, F-67083 Strasbourg, France.

出版信息

Genetics. 2004 Aug;167(4):1611-9. doi: 10.1534/genetics.104.028076.

Abstract

The influence of duplicated sequences on chromosomal stability is poorly understood. To characterize chromosomal rearrangements involving duplicated sequences, we compared the organization of tandem repeats of the DUP240 gene family in 15 Saccharomyces cerevisiae strains of various origins. The DUP240 gene family consists of 10 members of unknown function in the reference strain S288C. Five DUP240 paralogs on chromosome I and two on chromosome VII are arranged as tandem repeats that are highly polymorphic in copy number and sequence. We characterized DNA sequences that are likely involved in homologous or nonhomologous recombination events and are responsible for intra- and interchromosomal rearrangements that cause the creation and disappearance of DUP240 paralogs. The tandemly repeated DUP240 genes seem to be privileged sites of gene birth and death.

摘要

重复序列对染色体稳定性的影响目前还知之甚少。为了表征涉及重复序列的染色体重排,我们比较了15株不同来源的酿酒酵母菌株中DUP240基因家族串联重复序列的组织情况。在参考菌株S288C中,DUP240基因家族由10个功能未知的成员组成。位于第一条染色体上的5个DUP240旁系同源基因和位于第七条染色体上的2个DUP240旁系同源基因排列成串联重复序列,其拷贝数和序列具有高度多态性。我们对可能参与同源或非同源重组事件的DNA序列进行了表征,这些序列导致了DUP240旁系同源基因的产生和消失,进而引起了染色体内和染色体间的重排。串联重复的DUP240基因似乎是基因产生和消亡的特殊位点。

相似文献

1
Expansion and contraction of the DUP240 multigene family in Saccharomyces cerevisiae populations.
Genetics. 2004 Aug;167(4):1611-9. doi: 10.1534/genetics.104.028076.
2
Paleogenomics or the search for remnant duplicated copies of the yeast DUP240 gene family in intergenic areas.
Mol Biol Evol. 2005 Sep;22(9):1764-71. doi: 10.1093/molbev/msi170. Epub 2005 May 25.
3
An evolutionary scenario for one of the largest yeast gene families.
Trends Genet. 2006 Jan;22(1):10-5. doi: 10.1016/j.tig.2005.10.001. Epub 2005 Nov 2.
4
The three copies of the ATP1 gene are arranged in tandem on chromosome II of Saccharomyces cerevisiae S288C.
Yeast. 1999 Jul;15(10A):873-8. doi: 10.1002/(SICI)1097-0061(199907)15:10A<873::AID-YEA427>3.0.CO;2-A.
5
The characterization of two new clusters of duplicated genes suggests a 'Lego' organization of the yeast Saccharomyces cerevisiae chromosomes.
Yeast. 1997 Jul;13(9):861-9. doi: 10.1002/(SICI)1097-0061(199707)13:9<861::AID-YEA125>3.0.CO;2-9.
6
Differential evolution of the Saccharomyces cerevisiae DUP240 paralogs and implication of recombination in phylogeny.
Nucleic Acids Res. 2004 Apr 15;32(7):2069-78. doi: 10.1093/nar/gkh529. Print 2004.
7
Spontaneous duplications in diploid Saccharomyces cerevisiae cells.
DNA Repair (Amst). 2007 Oct 1;6(10):1441-52. doi: 10.1016/j.dnarep.2007.04.006. Epub 2007 Jun 4.
8
Chromosomal location of Lg-FLO1 in bottom-fermenting yeast and the FLO5 locus of industrial yeast.
J Appl Microbiol. 2008 Oct;105(4):1186-98. doi: 10.1111/j.1365-2672.2008.03852.x. Epub 2008 Jun 28.
9
Spontaneous deletions and reciprocal translocations in Saccharomyces cerevisiae: influence of ploidy.
Mol Microbiol. 2007 Apr;64(2):382-95. doi: 10.1111/j.1365-2958.2007.05660.x.
10
Recovery of gene function by gene duplication in Saccharomyces cerevisiae.
Yeast. 1995 Feb;11(2):169-77. doi: 10.1002/yea.320110208.

引用本文的文献

1
Discovery of a rapidly evolving yeast defense factor, , against the secreted killer toxin K28.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2217194120. doi: 10.1073/pnas.2217194120. Epub 2023 Feb 17.
2
Complete genome sequence and analysis of a Saccharomyces cerevisiae strain used for sugarcane spirit production.
Braz J Microbiol. 2021 Sep;52(3):1087-1095. doi: 10.1007/s42770-021-00444-z. Epub 2021 Apr 9.
3
Nature and distribution of large sequence polymorphisms in Saccharomyces cerevisiae.
FEMS Yeast Res. 2011 Nov;11(7):587-94. doi: 10.1111/j.1567-1364.2011.00748.x. Epub 2011 Sep 8.
4
Genome-wide computational prediction of tandem gene arrays: application in yeasts.
BMC Genomics. 2010 Jan 21;11:56. doi: 10.1186/1471-2164-11-56.
5
Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16333-8. doi: 10.1073/pnas.0904673106. Epub 2009 Sep 9.
6
Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12825-30. doi: 10.1073/pnas.0701291104. Epub 2007 Jul 25.
7
Duplication processes in Saccharomyces cerevisiae haploid strains.
Nucleic Acids Res. 2005 Nov 3;33(19):6319-26. doi: 10.1093/nar/gki941. Print 2005.

本文引用的文献

1
The DNA Repair Interest Group: a global village.
DNA Repair (Amst). 2005 Apr 4;4(4):405-6. doi: 10.1016/j.dnarep.2005.01.002.
2
Differential evolution of the Saccharomyces cerevisiae DUP240 paralogs and implication of recombination in phylogeny.
Nucleic Acids Res. 2004 Apr 15;32(7):2069-78. doi: 10.1093/nar/gkh529. Print 2004.
4
Direct measurement of the male recombination fraction in the human beta-globin hot spot.
Hum Mol Genet. 2002 Feb 1;11(3):207-15. doi: 10.1093/hmg/11.3.207.
5
Evolution of gene order in the genomes of two related yeast species.
Genome Res. 2001 Dec;11(12):2009-19. doi: 10.1101/gr.212701.
6
Gene and genome duplication.
Curr Opin Genet Dev. 2001 Dec;11(6):681-4. doi: 10.1016/s0959-437x(00)00253-7.
7
Segmental duplications: an 'expanding' role in genomic instability and disease.
Nat Rev Genet. 2001 Oct;2(10):791-800. doi: 10.1038/35093500.
8
Initial sequencing and analysis of the human genome.
Nature. 2001 Feb 15;409(6822):860-921. doi: 10.1038/35057062.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验