Dupont Laurence, Garcia Isabelle, Poggi Marie-Christine, Alloing Geneviève, Mandon Karine, Le Rudulier Daniel
Unité Interactions Plantes-Microorganismes et Santé Végétale, UMR6192 CNRS-INRA-Universitéde Nice Sophia Antipolis, Centre INRA Agrobiotech, 400 Route des Chappes, BP167, 06903 Sophia Antipolis Cédex, France.
J Bacteriol. 2004 Sep;186(18):5988-96. doi: 10.1128/JB.186.18.5988-5996.2004.
In Sinorhizobium meliloti, choline is the direct precursor of phosphatidylcholine, a major lipid membrane component in the Rhizobiaceae family, and glycine betaine, an important osmoprotectant. Moreover, choline is an efficient energy source which supports growth. Using a PCR strategy, we identified three chromosomal genes (choXWV) which encode components of an ABC transporter: ChoX (binding protein), ChoW (permease), and ChoV (ATPase). Whereas the best homology scores were obtained with components of betaine ProU-like systems, Cho is not involved in betaine transport. Site-directed mutagenesis of choX strongly reduced (60 to 75%) the choline uptake activity, and purification of ChoX, together with analysis of the ligand-binding specificity, showed that ChoX binds choline with a high affinity (KD, 2.7 microM) and acetylcholine with a low affinity (KD, 145 microM) but binds none of the betaines. Uptake competition experiments also revealed that ectoine, various betaines, and choline derivatives were not effective competitors for Cho-mediated choline transport. Thus, Cho is a highly specific high-affinity choline transporter. Choline transport activity and ChoX expression were induced by choline but not by salt stress. Western blotting experiments with antibodies raised against ChoX demonstrated the presence of ChoX in bacteroids isolated from nitrogen-fixing nodules obtained from Medicago sativa roots. The choX mutation did not have an effect on growth under standard conditions, and neither Nod nor Fix phenotypes were impaired in the mutant, suggesting that the remaining choline uptake system(s) still present in the mutant strain can compensate for the lack of Cho transporter.
在苜蓿中华根瘤菌中,胆碱是磷脂酰胆碱(根瘤菌科主要的脂质膜成分)和甘氨酸甜菜碱(一种重要的渗透保护剂)的直接前体。此外,胆碱是支持生长的有效能量来源。我们采用聚合酶链式反应(PCR)策略,鉴定出三个染色体基因(choXWV),它们编码一个ABC转运蛋白的组分:ChoX(结合蛋白)、ChoW(通透酶)和ChoV(ATP酶)。尽管与甜菜碱ProU样系统的组分具有最佳的同源性得分,但Cho并不参与甜菜碱转运。对choX进行定点诱变可使胆碱摄取活性大幅降低(60%至75%),ChoX的纯化以及配体结合特异性分析表明,ChoX以高亲和力(解离常数KD为2.7微摩尔)结合胆碱,以低亲和力(解离常数KD为145微摩尔)结合乙酰胆碱,但不结合任何一种甜菜碱。摄取竞争实验还表明,羟基乙磺酸、各种甜菜碱和胆碱衍生物并非Cho介导的胆碱转运的有效竞争者。因此,Cho是一种高度特异性的高亲和力胆碱转运蛋白。胆碱转运活性和ChoX表达由胆碱诱导,但不由盐胁迫诱导。用针对ChoX产生的抗体进行的蛋白质免疫印迹实验表明,在从紫花苜蓿根中获得的固氮根瘤中分离出的类菌体中存在ChoX。choX突变在标准条件下对生长没有影响,并且突变体的结瘤(Nod)和固氮(Fix)表型均未受损,这表明突变菌株中仍然存在的其余胆碱摄取系统可以弥补Cho转运蛋白的缺失。