Suppr超能文献

在特定蛋白质系统中将DNA超螺旋与转录偶联起来。

Coupling DNA supercoiling to transcription in defined protein systems.

作者信息

Leng Fenfei, Amado Luciana, McMacken Roger

机构信息

Department of Chemistry & Biochemistry, Florida International University, Miami, Florida 33199, USA.

出版信息

J Biol Chem. 2004 Nov 12;279(46):47564-71. doi: 10.1074/jbc.M403798200. Epub 2004 Sep 1.

Abstract

Transcription of closed circular DNA templates in the presence of DNA gyrase is known to stimulate negative DNA supercoiling both in vivo and in vitro. It has proven elusive, however, to establish a general system in vitro that supports transcription-coupled DNA supercoiling (TCDS) by the "twin-domain" mechanism (Liu, L. F. and Wang, J. C. (1987) Proc. Natl. Acad. Sci. USA 84, 7024-7027) that operates in bacteria. In this report, we examine the properties of TCDS in defined protein systems that minimally contained T7 RNA polymerase and DNA gyrase. Specifically designed plasmid DNA templates permitted us to control the location and length of RNA transcripts. We demonstrate that TCDS takes place by two separate, and apparently independent, mechanistic pathways in vitro. The first supercoiling pathway, which is not likely to be significant in vivo, was found to be dependent on R-loop formation and could be suppressed by the presence of RNase H or bacterial HU protein. The second pathway for TCDS was much more potent, but became predominant in vitro only when sequence-specific DNA-bending proteins were present during transcription, and RNA transcript lengths exceeded 3 kb. This major supercoiling route was shown to be resistant to RNase H and had functional properties consistent with those predicted for the twin-domain mechanism. For example, DNA supercoiling activity was proportional to RNA transcript length and was greatly stimulated by macromolecular crowding agents. Under optimal conditions, the twin domain pathway of TCDS rapidly and efficiently generated superhelicity levels more than twice that typically found in vivo.

摘要

已知在DNA促旋酶存在的情况下,闭环DNA模板的转录在体内和体外均能刺激负超螺旋的形成。然而,要建立一个体外通用系统来支持通过细菌中起作用的“双结构域”机制(Liu, L. F.和Wang, J. C. (1987) Proc. Natl. Acad. Sci. USA 84, 7024 - 7027)进行的转录偶联DNA超螺旋化(TCDS),一直难以实现。在本报告中,我们研究了在最少包含T7 RNA聚合酶和DNA促旋酶的特定蛋白质系统中TCDS的特性。经过特殊设计的质粒DNA模板使我们能够控制RNA转录本的位置和长度。我们证明,TCDS在体外通过两条独立且明显不同的机制途径发生。第一条超螺旋途径在体内可能不太重要,它依赖于R环的形成,并且可以被RNase H或细菌HU蛋白的存在所抑制。第二条TCDS途径更为有效,但仅在转录过程中存在序列特异性DNA弯曲蛋白且RNA转录本长度超过3 kb时,才在体外占主导地位。这条主要的超螺旋途径被证明对RNase H具有抗性,并且具有与双结构域机制预测相符的功能特性。例如,DNA超螺旋活性与RNA转录本长度成正比,并且受到大分子拥挤剂的极大刺激。在最佳条件下,TCDS的双结构域途径能够快速有效地产生超螺旋水平,其超螺旋水平比体内通常发现的水平高出两倍以上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验