Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Mol Microbiol. 2024 Jul;122(1):81-112. doi: 10.1111/mmi.15283. Epub 2024 Jun 7.
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
细菌染色体中的 DNA 通过称为类核相关蛋白(NAPs)或细菌染色质蛋白(BCPs)的 DNA 结合蛋白组织成更高阶的结构。BCPs 通常结合到或靠近 RNA 聚合酶(RNAP)转录的 DNA 基因座,并且可以增加或减少基因表达。为了了解 BCPs 改变转录的机制,人们必须同时考虑空间效应和当 DNA 偏离其完全松弛的双螺旋结构时出现的拓扑力。每当 RNAP 和 DNA 无法自由旋转时,转录的 RNAP 在上游产生 DNA 负(-)超螺旋,在下游产生 DNA 正(+)超螺旋。这种(-)和(+)超螺旋产生拓扑力,阻止 DNA 通过 RNAP 的正向易位,除非超螺旋受到 BCPs 的限制或由拓扑异构酶缓解。BCPs 也可以增强拓扑应力,并且通常可以抑制或辅助转录。在这里,我们回顾了当前对 RNAP、BCPs 和 DNA 拓扑结构如何相互作用以控制基因表达的理解。