Suppr超能文献

细菌染色质蛋白、转录和 DNA 拓扑结构:基因表达调控中不可分割的伙伴。

Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression.

机构信息

Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Mol Microbiol. 2024 Jul;122(1):81-112. doi: 10.1111/mmi.15283. Epub 2024 Jun 7.

Abstract

DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.

摘要

细菌染色体中的 DNA 通过称为类核相关蛋白(NAPs)或细菌染色质蛋白(BCPs)的 DNA 结合蛋白组织成更高阶的结构。BCPs 通常结合到或靠近 RNA 聚合酶(RNAP)转录的 DNA 基因座,并且可以增加或减少基因表达。为了了解 BCPs 改变转录的机制,人们必须同时考虑空间效应和当 DNA 偏离其完全松弛的双螺旋结构时出现的拓扑力。每当 RNAP 和 DNA 无法自由旋转时,转录的 RNAP 在上游产生 DNA 负(-)超螺旋,在下游产生 DNA 正(+)超螺旋。这种(-)和(+)超螺旋产生拓扑力,阻止 DNA 通过 RNAP 的正向易位,除非超螺旋受到 BCPs 的限制或由拓扑异构酶缓解。BCPs 也可以增强拓扑应力,并且通常可以抑制或辅助转录。在这里,我们回顾了当前对 RNAP、BCPs 和 DNA 拓扑结构如何相互作用以控制基因表达的理解。

相似文献

1
Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression.
Mol Microbiol. 2024 Jul;122(1):81-112. doi: 10.1111/mmi.15283. Epub 2024 Jun 7.
3
Transcription of Bacterial Chromatin.
J Mol Biol. 2019 Sep 20;431(20):4040-4066. doi: 10.1016/j.jmb.2019.05.041. Epub 2019 May 31.
4
DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium.
Mol Microbiol. 2010 Dec;78(6):1348-64. doi: 10.1111/j.1365-2958.2010.07394.x. Epub 2010 Sep 30.
5
Transcription-driven DNA supercoiling counteracts H-NS-mediated gene silencing in bacterial chromatin.
Nat Commun. 2024 Mar 30;15(1):2787. doi: 10.1038/s41467-024-47114-w.
7
8
[The bacterial nucleoid].
Rev Latinoam Microbiol. 1995 Jul-Sep;37(3):281-90.
10
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

引用本文的文献

1
Nucleoid-associated proteins: molecular mechanisms in microbial adaptation.
World J Microbiol Biotechnol. 2025 Jul 28;41(8):277. doi: 10.1007/s11274-025-04419-2.
5
The pheS5-fit95 interface is essential for eliciting hallmark phenotype of fitA76 in Escherichia coli.
Mol Biol Rep. 2025 Apr 30;52(1):438. doi: 10.1007/s11033-025-10460-z.
6
Biophysical modeling reveals the transcriptional regulatory mechanism of Spo0A, the master regulator in starving .
mSystems. 2025 May 20;10(5):e0007225. doi: 10.1128/msystems.00072-25. Epub 2025 Apr 29.
8
SMC translocation is unaffected by an excess of nucleoid associated proteins in vivo.
Sci Rep. 2025 Jan 19;15(1):2447. doi: 10.1038/s41598-025-86946-4.
9
Antibacterial carbon dots.
Mater Today Bio. 2024 Dec 5;30:101383. doi: 10.1016/j.mtbio.2024.101383. eCollection 2025 Feb.
10
Characterization of acidic lysine acylations in mycobacteria.
Front Microbiol. 2024 Dec 10;15:1503184. doi: 10.3389/fmicb.2024.1503184. eCollection 2024.

本文引用的文献

1
Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending.
Nucleic Acids Res. 2024 Aug 12;52(14):8193-8204. doi: 10.1093/nar/gkae485.
2
An experimental framework to assess biomolecular condensates in bacteria.
Nat Commun. 2024 Apr 15;15(1):3222. doi: 10.1038/s41467-024-47330-4.
3
Transcription-driven DNA supercoiling counteracts H-NS-mediated gene silencing in bacterial chromatin.
Nat Commun. 2024 Mar 30;15(1):2787. doi: 10.1038/s41467-024-47114-w.
5
Condensation of the N-terminal domain of human topoisomerase 1 is driven by electrostatic interactions and tuned by its charge distribution.
Int J Biol Macromol. 2024 Jan;254(Pt 1):127754. doi: 10.1016/j.ijbiomac.2023.127754. Epub 2023 Oct 29.
6
Transcription-induced domains form the elementary constraining building blocks of bacterial chromosomes.
Nat Struct Mol Biol. 2024 Mar;31(3):489-497. doi: 10.1038/s41594-023-01178-2. Epub 2024 Jan 4.
8
Single-molecule visualization of twin-supercoiled domains generated during transcription.
Nucleic Acids Res. 2024 Feb 28;52(4):1677-1687. doi: 10.1093/nar/gkad1181.
9
Lysine acetylation regulates the AT-rich DNA possession ability of H-NS.
Nucleic Acids Res. 2024 Feb 28;52(4):1645-1660. doi: 10.1093/nar/gkad1172.
10
Differential roles of positive and negative supercoiling in organizing the E. coli genome.
Nucleic Acids Res. 2024 Jan 25;52(2):724-737. doi: 10.1093/nar/gkad1139.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验