Suppr超能文献

使用公共因子模型对不完整的高维多元正态数据进行插补。

Imputation for incomplete high-dimensional multivariate normal data using a common factor model.

作者信息

Song Juwon, Belin Thomas R

机构信息

Department of Biostatistics and Applied Mathematics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 447, Houston 77030, USA.

出版信息

Stat Med. 2004 Sep 30;23(18):2827-43. doi: 10.1002/sim.1867.

Abstract

It is common in applied research to have large numbers of variables measured on a modest number of cases. Even with low rates of missingness on individual variables, such data sets can have a large number of incomplete cases. Here we present a new method for handling missing continuously scaled items in multivariate data, based on extracting common factors to reduce the number of covariance parameters to be estimated in a multivariate normal model. The technique is compared in several simulation settings to available-case analysis and to a multivariate normal model with a ridge prior. The method is also illustrated on a study with over 100 variables evaluating an emergency room intervention for adolescents who attempted suicide.

摘要

在应用研究中,对数量不多的案例测量大量变量是很常见的。即使单个变量的缺失率很低,这样的数据集也可能有大量不完整的案例。在此,我们提出一种处理多变量数据中连续尺度缺失项的新方法,该方法基于提取公共因子以减少多元正态模型中待估计的协方差参数数量。在几种模拟设置中,将该技术与可用案例分析以及具有岭先验的多元正态模型进行了比较。该方法还在一项对100多个变量进行评估针对自杀未遂青少年的急诊室干预措施的研究中得到了说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验