Popovic Zoran B, Khot Umesh N, Novaro Gian M, Casas Fernando, Greenberg Neil L, Garcia Mario J, Francis Gary S, Thomas James D
Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA.
Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H416-23. doi: 10.1152/ajpheart.00615.2004. Epub 2004 Sep 2.
In the recently published clinical study [Use of Nitroprusside in Left Ventricular Dysfunction and Obstructive Aortic Valve Disease (UNLOAD)], sodium nitroprusside (SNP) improved cardiac function in patients with severe aortic stenosis (AS) and left ventricular (LV) systolic dysfunction. We explored the possible mechanisms of these findings using a series of numerical simulations. A closed-loop lumped parameters model that consists of 24 differential equations relating pressure and flow throughout the circulation was used to analyze the effects of varying hemodynamic conditions in AS. Hemodynamic data from UNLOAD study subjects were used to construct the initial simulation. Systemic vascular resistance (SVR), heart rate, and aortic valve area were directly entered into the model while end-systolic and end-diastolic pressure-volume (P-V) relationships were adjusted using previously published data to match modeled and observed end-systolic and end-diastolic pressures and volumes. Initial simulation of SNP treatment by a reduction of SVR was not adequate. To obtain realistic model hemodynamics that reliably reproduce SNP treatment effects, we performed a series of simulations while simultaneously changing end-systolic elastance (E(es)), end-systolic volume at zero pressure (V(0)), and diastolic P-V shift. Our data indicate that either an E(es) increase or V(0) decrease is necessary to obtain realistic model hemodynamics. In five patients, we corroborated our findings by using the model to duplicate individual P-V loops obtained before and during SNP treatment. In conclusion, using a numerical model, we identified ventricular function parameters that are responsible for improved hemodynamics during SNP infusion in AS with LV dysfunction.
在最近发表的一项临床研究[硝普钠在左心室功能不全和主动脉瓣狭窄疾病中的应用(UNLOAD)]中,硝普钠(SNP)改善了重度主动脉瓣狭窄(AS)和左心室(LV)收缩功能不全患者的心脏功能。我们使用一系列数值模拟来探究这些研究结果的可能机制。采用一个由24个微分方程组成的闭环集总参数模型,这些方程描述了整个循环系统中压力和血流的关系,以分析AS患者不同血流动力学状态的影响。利用UNLOAD研究对象的血流动力学数据构建初始模拟。将全身血管阻力(SVR)、心率和主动脉瓣面积直接输入模型,同时利用先前发表的数据调整收缩末期和舒张末期压力-容积(P-V)关系,以使模拟的收缩末期和舒张末期压力及容积与观察值相匹配。通过降低SVR对SNP治疗进行的初始模拟并不充分。为了获得能可靠再现SNP治疗效果的真实模型血流动力学,我们进行了一系列模拟,同时改变收缩末期弹性(E(es))、零压力下的收缩末期容积(V(0))和舒张期P-V偏移。我们的数据表明,要获得真实的模型血流动力学,E(es)增加或V(0)降低是必要的。在5名患者中,我们通过使用该模型复制SNP治疗前和治疗期间获得的个体P-V环,证实了我们的研究结果。总之,通过一个数值模型,我们确定了在LV功能不全的AS患者中,SNP输注期间导致血流动力学改善的心室功能参数。