Bar-Zvi D, Bar I, Yoshida M, Shavit N
Doris and Bertie Black Center of Bioenergetics in Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
J Biol Chem. 1992 Jun 5;267(16):11029-33.
Binding of the photoreactive ATP analog, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP), to the isolated alpha and beta subunits of TF1 and to the alpha 3 beta 3 "core" complex of the holoenzyme is described. About 1 mol of BzATP/mol of subunit was incorporated to isolated alpha and beta subunits. The incorporation of BzATP was prevented by ATP. Covalent binding of BzATP to the alpha subunit was in general somewhat lower than that observed with the beta subunit. No complex was formed upon mixing of either of the modified subunits with the complementary nontreated subunits. Covalent binding of 3 mol of BzATP/alpha 3 beta 3 complex completely inhibited ATPase activity and resulted in the dissociation of the complex. The labeled nucleotide analog was specifically incorporated into the beta subunit of the complex. The holoenzyme TF1, in contrast to the core complex, did not dissociate to the individual subunits upon covalent binding of BzATP. These results are discussed in relation to the location of the catalytic nucleotide binding site(s) and the conformation stability of the alpha 3 beta 3 core complex of TF1.