Hagedorn M, Peterson A, Mazur P, Kleinhans F W
Department of Reproductive Sciences, Smithsonian's National Zoological Park, Washington, DC 20008, USA.
Cryobiology. 2004 Oct;49(2):181-9. doi: 10.1016/j.cryobiol.2004.07.001.
Although fish embryos have been used in a number of slow-freezing cryopreservation experiments, they have never been successfully cryopreserved. In part this is because little is known about whether ice forms within the embryo during the slow-freezing dehydration process. Therefore, we examined the temperature of intraembryonic ice formation (T(IIF)) and the temperature of extraembryonic ice formation (T(EIF)), using a cryomicroscope. We used both unmodified zebrafish embryos and those with water channels (aquaporin-3 or AQP3) inserted into their membranes to increase permeability to water and cryoprotectants, examined at 100% epiboly to the 6-somite stage. In these experiments we examined: (1) the spontaneous freezing of (external) solutions; (2) the spontaneous freezing of solutions containing embryos; (3) the effect of preloading the embryos with cryoprotectants on T(IIF); (4) whether preloading the embryos with cryoprotectant helps in survival after nucleating events in the solution; and (5) the damaging effects of extracellular nucleation events versus solution toxicity on the embryos. The solutes alone (embryo medium--EM, sucrose culture medium, 1 M propylene glycol in EM, and 1 M propylene glycol in a sucrose culture medium) froze at -14.9 +/- 1.1, -17.0 +/- 0.3, -17.8 +/- 1.0, and -17.7 +/- 1.4, respectively. There was no difference amongst these means (P > 0.05), thus adding cryoprotectant did not significantly lower the nucleation point. Adding embryos (preloaded with cryoprotectant or not) did not change the basic freezing characteristics of these solutes. In all these experiments, (T(EIF)) equaled (T(IIF)), and there was no difference in the freezing point of the solutions with or without the embryos (P > 0.05). Additionally, there was no difference in the freezing characteristics of embryos with and without aquaporins (P > 0.05). The formation of intraembryonic ice was lethal to the zebrafish embryos in all cases. But this lethal outcome was not related to solution injury effects, because 88-98% of embryos survived when exposed to a higher solute concentration with no ice present. Taken together, these data suggest that slow-freezing is not a suitable option for zebrafish embryos. The mechanism of this high temperature nucleation event in zebrafish embryos is still unknown.
尽管鱼胚胎已被用于多项慢速冷冻保存实验,但它们从未被成功冷冻保存过。部分原因是对于在慢速冷冻脱水过程中胚胎内部是否形成冰了解甚少。因此,我们使用低温显微镜研究了胚胎内冰形成的温度(T(IIF))和胚胎外冰形成的温度(T(EIF))。我们使用了未修饰的斑马鱼胚胎以及那些在其细胞膜中插入了水通道(水通道蛋白-3或AQP3)以增加对水和冷冻保护剂渗透性的胚胎,研究阶段为100%外包至6体节期。在这些实验中,我们研究了:(1)(外部)溶液的自发冷冻;(2)含有胚胎的溶液的自发冷冻;(3)用冷冻保护剂预加载胚胎对T(IIF)的影响;(4)用冷冻保护剂预加载胚胎是否有助于在溶液中的成核事件后存活;以及(5)细胞外成核事件与溶液毒性对胚胎的损伤作用。单独的溶质(胚胎培养基——EM、蔗糖培养基、EM中1 M丙二醇以及蔗糖培养基中1 M丙二醇)的冰点分别为-14.9±1.1、-17.0±0.3、-17.8±1.0和-17.7±1.4。这些平均值之间没有差异(P>0.05),因此添加冷冻保护剂并没有显著降低成核点。添加胚胎(无论是否预加载冷冻保护剂)并没有改变这些溶质的基本冷冻特性。在所有这些实验中,(T(EIF))等于(T(IIF)),并且有胚胎和没有胚胎的溶液的冰点没有差异(P>0.05)。此外,有和没有水通道蛋白的胚胎的冷冻特性没有差异(P>0.05)。在所有情况下,胚胎内冰的形成对斑马鱼胚胎都是致命的。但这种致命结果与溶液损伤效应无关,因为当暴露于更高溶质浓度且无冰存在时,88 - 98%的胚胎存活。综上所述,这些数据表明慢速冷冻不是斑马鱼胚胎的合适选择。斑马鱼胚胎中这种高温成核事件的机制仍然未知。