Suppr超能文献

音乐音色序列的内隐学习:面对声学(不)相似性的统计规律

Implicit learning of musical timbre sequences: statistical regularities confronted with acoustical (dis)similarities.

作者信息

Tillmann Barbara, McAdams Stephen

机构信息

Centre National de Recherche Scientifique, Unité Mixte de Recherche 5020, U Claude Bernard Lyon 1, Lyon, France.

出版信息

J Exp Psychol Learn Mem Cogn. 2004 Sep;30(5):1131-42. doi: 10.1037/0278-7393.30.5.1131.

Abstract

The present study investigated the influence of acoustical characteristics on the implicit learning of statistical regularities (transition probabilities) in sequences of musical timbres. The sequences were constructed in such a way that the acoustical dissimilarities between timbres potentially created segmentations that either supported (S1) or contradicted (S2) the statistical regularities or were neutral (S3). In the learning group, participants first listened to the continuous timbre sequence and then had to distinguish statistical units from new units. In comparison to a control group without the exposition phase, no interaction between sequence type and amount of learning was observed: Performance increased by the same amount for the three sequences. In addition, performance reflected an overall preference for acoustically similar timbre units. The present outcome extends previous data from the domain of implicit learning to complex nonverbal auditory material. It further suggests that listeners become sensitive to statistical regularities despite acoustical characteristics in the material that potentially affect grouping.

摘要

本研究调查了声学特征对音乐音色序列中统计规律(转移概率)内隐学习的影响。构建这些序列的方式是,音色之间的声学差异可能会产生支持(S1)或违背(S2)统计规律或为中性(S3)的分割。在学习组中,参与者首先聆听连续的音色序列,然后必须从新的单元中区分出统计单元。与没有暴露阶段的对照组相比,未观察到序列类型与学习量之间的相互作用:三种序列的表现提高幅度相同。此外,表现反映出对声学上相似音色单元的总体偏好。目前的结果将内隐学习领域的先前数据扩展到了复杂的非言语听觉材料。这进一步表明,尽管材料中的声学特征可能会影响分组,但听众对统计规律变得敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验