Center for Childhood Deafness, Language, and Learning, Boys Town National Research Hospital, Omaha, NE, United States.
Neurosci Biobehav Rev. 2020 May;112:279-299. doi: 10.1016/j.neubiorev.2020.01.032. Epub 2020 Feb 1.
Despite a growing body of research devoted to the study of how humans encode environmental patterns, there is still no clear consensus about the nature of the neurocognitive mechanisms underpinning statistical learning nor what factors constrain or promote its emergence across individuals, species, and learning situations. Based on a review of research examining the roles of input modality and domain, input structure and complexity, attention, neuroanatomical bases, ontogeny, and phylogeny, ten core principles are proposed. Specifically, there exist two sets of neurocognitive mechanisms underlying statistical learning. First, a "suite" of associative-based, automatic, modality-specific learning mechanisms are mediated by the general principle of cortical plasticity, which results in improved processing and perceptual facilitation of encountered stimuli. Second, an attention-dependent system, mediated by the prefrontal cortex and related attentional and working memory networks, can modulate or gate learning and is necessary in order to learn nonadjacent dependencies and to integrate global patterns across time. This theoretical framework helps clarify conflicting research findings and provides the basis for future empirical and theoretical endeavors.
尽管越来越多的研究致力于研究人类如何对环境模式进行编码,但对于支持统计学习的神经认知机制的本质,以及哪些因素限制或促进其在个体、物种和学习情境中的出现,仍没有明确的共识。基于对研究输入模态和领域、输入结构和复杂性、注意力、神经解剖基础、个体发生和系统发生作用的审查,提出了十个核心原则。具体来说,有两套神经认知机制支持统计学习。首先,一套基于联想的、自动的、模态特定的学习机制是由皮质可塑性的一般原则介导的,这导致了遇到的刺激的处理和感知的改善。其次,一个依赖于注意力的系统,由前额叶皮层和相关的注意力和工作记忆网络介导,可以调节或门控学习,并且对于学习非相邻的依存关系和整合跨越时间的全局模式是必要的。这个理论框架有助于澄清相互矛盾的研究结果,并为未来的实证和理论努力提供基础。