Suppr超能文献

先进的适应度景观分析与文化算法的性能

Advanced fitness landscape analysis and the performance of memetic algorithms.

作者信息

Merz Peter

机构信息

University of Kaiserslautern, Department of Computer Science P.O. Box 3049, D-67653 Kaiserslautern, Germany.

出版信息

Evol Comput. 2004 Fall;12(3):303-25. doi: 10.1162/1063656041774956.

Abstract

Memetic algorithms (MAs) have demonstrated very effective in combinatorial optimization. This paper offers explanations as to why this is so by investigating the performance of MAs in terms of efficiency and effectiveness. A special class of MAs is used to discuss efficiency and effectiveness for local search and evolutionary meta-search. It is shown that the efficiency of MAs can be increased drastically with the use of domain knowledge. However, effectiveness highly depends on the structure of the problem. As is well-known, identifying this structure is made easier with the notion of fitness landscapes: the local properties of the fitness landscape strongly influence the effectiveness of the local search while the global properties strongly influence the effectiveness of the evolutionary meta-search. This paper also introduces new techniques for analyzing the fitness landscapes of combinatorial problems; these techniques focus on the investigation of random walks in the fitness landscape starting at locally optimal solutions as well as on the escape from the basins of attractions of current local optima. It is shown for NK-landscapes and landscapes of the unconstrained binary quadratic programming problem (BQP) that a random walk to another local optimum can be used to explain the efficiency of recombination in comparison to mutation. Moreover, the paper shows that other aspects like the size of the basins of attractions of local optima are important for the efficiency of MAs and a local search escape analysis is proposed. These simple analysis techniques have several advantages over previously proposed statistical measures and provide valuable insight into the behaviour of MAs on different kinds of landscapes.

摘要

在组合优化中,模因算法(MA)已证明非常有效。本文通过研究MA在效率和有效性方面的表现,对其原因进行了解释。使用一类特殊的MA来讨论局部搜索和进化元搜索的效率和有效性。结果表明,利用领域知识可以大幅提高MA的效率。然而,有效性高度依赖于问题的结构。众所周知,通过适应度景观的概念更容易识别这种结构:适应度景观的局部属性强烈影响局部搜索的有效性,而全局属性则强烈影响进化元搜索的有效性。本文还介绍了分析组合问题适应度景观的新技术;这些技术专注于研究从局部最优解开始在适应度景观中的随机游走,以及从当前局部最优解的吸引盆中逃逸。对于NK景观和无约束二元二次规划问题(BQP)的景观,结果表明与变异相比,向另一个局部最优解的随机游走可用于解释重组的效率。此外,本文表明局部最优解吸引盆的大小等其他方面对MA的效率很重要,并提出了局部搜索逃逸分析。这些简单的分析技术比先前提出的统计度量有几个优点,并为MA在不同类型景观上的行为提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验