Areibi Shawki, Yang Zhen
School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
Evol Comput. 2004 Fall;12(3):327-53. doi: 10.1162/1063656041774947.
Combining global and local search is a strategy used by many successful hybrid optimization approaches. Memetic Algorithms (MAs) are Evolutionary Algorithms (EAs) that apply some sort of local search to further improve the fitness of individuals in the population. Memetic Algorithms have been shown to be very effective in solving many hard combinatorial optimization problems. This paper provides a forum for identifying and exploring the key issues that affect the design and application of Memetic Algorithms. The approach combines a hierarchical design technique, Genetic Algorithms, constructive techniques and advanced local search to solve VLSI circuit layout in the form of circuit partitioning and placement. Results obtained indicate that Memetic Algorithms based on local search, clustering and good initial solutions improve solution quality on average by 35% for the VLSI circuit partitioning problem and 54% for the VLSI standard cell placement problem.
结合全局搜索和局部搜索是许多成功的混合优化方法所采用的策略。Memetic算法(MAs)是进化算法(EAs),它应用某种局部搜索来进一步提高种群中个体的适应度。Memetic算法已被证明在解决许多难的组合优化问题方面非常有效。本文提供了一个平台,用于识别和探索影响Memetic算法设计和应用的关键问题。该方法结合了分层设计技术、遗传算法、构造技术和高级局部搜索,以电路划分和布局的形式解决超大规模集成电路(VLSI)电路布局问题。获得的结果表明,基于局部搜索、聚类和良好初始解的Memetic算法,对于VLSI电路划分问题,平均可将解的质量提高35%;对于VLSI标准单元布局问题,平均可提高54%。