Zhang Min, Hu Peirong, Napoli Joseph L
Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720-3104, USA.
J Biol Chem. 2004 Dec 3;279(49):51482-9. doi: 10.1074/jbc.M409051200. Epub 2004 Sep 7.
High affinity, retinoid-specific binding proteins chaperone retinoids to manage their transport and metabolism. Proposing mechanisms of retinoid transfer between these binding proteins and membrane-associated retinoid-metabolizing enzymes requires insight into enzyme topology. We therefore determined the topology of mouse retinol dehydrogenase type 1 (Rdh1) and cis-retinoid androgen dehydrogenase type 1 (Crad1) in the endoplasmic reticulum of intact mammalian cells. The properties of Rdh1 were compared with a chimera with a luminal signaling sequence (11beta-hydroxysteroid dehydrogenase (11beta-HSD1)(1-41)/Rdh1(23-317); the green fluorescent protein (GFP) fusion proteins Rdh1(1-22)/GFP, Crad1(1-22)/GFP, and 11beta-HSD1(1-41)/GFP; and signaling sequence charge difference mutants using confocal immunofluorescence, antibody access, proteinase K sensitivity, and deglycosylation assays. An N-terminal signaling sequence of 22 residues, consisting of a hydrophobic helix ending in a net positive charge, anchors Rdh1 and Crad1 in the endoplasmic reticulum facing the cytoplasm. Mutating arginine to glutamine in the signaling sequence did not affect topology. Inserting one or two arginine residues near the N terminus of the signaling sequence caused 28-95% inversion from cytoplasmic to luminal, depending on the net positive charge remaining at the C terminus of the signaling sequence; e.g. the mutant L3R,L5R,R16Q,R19Q,R21Q faced the lumen. Experiments with N- and C-terminal epitope-tagged Rdh1 and molecular modeling indicated that a hydrophobic helix-turn-helix near the C terminus of Rdh1 (residues 289-311) projects into the cytoplasm. These data provide insight into the features necessary to orient type III (reverse signal-anchor) proteins and demonstrate that Rdh1, Crad1, and other short-chain dehydrogenases/reductases, which share similar N-terminal signaling sequences such as human Rdh5 and mouse Rdh4, orient with their catalytic domains facing the cytoplasm.
高亲和力的类视黄醇特异性结合蛋白陪伴类视黄醇,以调控其运输和代谢。要阐明这些结合蛋白与膜相关类视黄醇代谢酶之间类视黄醇的转移机制,需要深入了解酶的拓扑结构。因此,我们确定了完整哺乳动物细胞内质网中1型小鼠视黄醇脱氢酶(Rdh1)和顺式类视黄醇雄激素脱氢酶1型(Crad1)的拓扑结构。将Rdh1的特性与具有腔内信号序列的嵌合体(11β-羟基类固醇脱氢酶(11β-HSD1)(1-41)/Rdh1(23-317))、绿色荧光蛋白(GFP)融合蛋白Rdh1(1-22)/GFP、Crad1(1-22)/GFP以及使用共聚焦免疫荧光、抗体进入、蛋白酶K敏感性和去糖基化分析的信号序列电荷差异突变体进行了比较。由一个以净正电荷结尾的疏水螺旋组成的22个残基的N端信号序列,将Rdh1和Crad1锚定在内质网中面向细胞质的位置。信号序列中的精氨酸突变为谷氨酰胺不影响拓扑结构。在信号序列N端附近插入一两个精氨酸残基会导致28%-95%从细胞质向腔内的反转,这取决于信号序列C端剩余的净正电荷;例如,突变体L3R、L5R、R16Q、R19Q、R21Q面向腔内。用N端和C端表位标记的Rdh1进行的实验和分子建模表明,Rdh1 C端附近(第289-311位残基)的一个疏水螺旋-转角-螺旋结构伸入细胞质。这些数据为III型(反向信号锚定)蛋白定向所需的特征提供了深入了解,并证明Rdh1、Crad1以及其他具有相似N端信号序列的短链脱氢酶/还原酶(如人类Rdh5和小鼠Rdh4)以其催化结构域面向细胞质的方式定向。