Suppr超能文献

挖掘《在线人类孟德尔遗传》以洞察复杂疾病。

Mining OMIM for insight into complex diseases.

作者信息

Cantor Michael N, Lussier Yves A

机构信息

Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA.

出版信息

Stud Health Technol Inform. 2004;107(Pt 2):753-7.

Abstract

Understanding clinical phenotypes through their corresponding genotypes is one of the principal goals of genetic research. Though achieving this goal is relatively simple with single gene syndromes, more complex diseases often consist of varied clinical phenotypes that may be the result of interactions among multiple genetic loci. Microarray technology has brought the phenotype -genotype relationship to the molecular level, using differently behaving cancers, for example, as the basis for comparing patterns of gene expression. With this feasibility study, we attempted to use similar methods of analysis at the clinical level, in order to evaluate our hypothesis that the clustering of clinical phenotypes would provide information that would be useful in elucidating their underlying genotypes. Because of its breadth of content and detailed descriptions, we used OMIM as our source material for phenotypic and genetic information. After processing the source material, we then performed self-organizing map and hierarchical clustering analysis on representative diseases by phenotypic category. Through pre-determined queries over this analysis, we made two findings of potential clinical significance, one concerning diabetes and another concerning progressive neurologic diseases. Our methods provide a formal approach to analyzing phenotypes among diverse diseases, and may help indicate fruitful areas for further research into their underlying genetic causes.

摘要

通过相应的基因型来理解临床表型是基因研究的主要目标之一。虽然对于单基因综合征而言实现这一目标相对简单,但更为复杂的疾病通常包含多种不同的临床表型,这些表型可能是多个基因座之间相互作用的结果。微阵列技术已将表型 - 基因型关系提升到分子层面,例如以行为各异的癌症作为比较基因表达模式的基础。在这项可行性研究中,我们尝试在临床层面运用类似的分析方法,以评估我们的假设,即临床表型的聚类会提供有助于阐明其潜在基因型的信息。由于其内容广泛且描述详细,我们将《在线人类孟德尔遗传》(OMIM)作为表型和基因信息的来源材料。在对源材料进行处理后,我们接着按表型类别对代表性疾病进行了自组织映射和层次聚类分析。通过对该分析进行预先设定的查询,我们得出了两个具有潜在临床意义的发现,一个涉及糖尿病,另一个涉及进行性神经疾病。我们的方法为分析多种疾病的表型提供了一种正式途径,并且可能有助于指明对其潜在遗传病因进行进一步研究的富有成效的领域。

相似文献

1
Mining OMIM for insight into complex diseases.
Stud Health Technol Inform. 2004;107(Pt 2):753-7.
2
Searching Online Mendelian Inheritance in Man (OMIM) for information on genetic loci involved in human disease.
Curr Protoc Bioinformatics. 2009 Sep;Chapter 1:Unit 1.2. doi: 10.1002/0471250953.bi0102s27.
3
Inherited disorder phenotypes: controlled annotation and statistical analysis for knowledge mining from gene lists.
BMC Bioinformatics. 2005 Dec 1;6 Suppl 4(Suppl 4):S18. doi: 10.1186/1471-2105-6-S4-S18.
4
OMIM.org: leveraging knowledge across phenotype-gene relationships.
Nucleic Acids Res. 2019 Jan 8;47(D1):D1038-D1043. doi: 10.1093/nar/gky1151.
5
Phenotypic and genotypic analyses of genetic skin disease through the Online Mendelian Inheritance in Man (OMIM) database.
J Invest Dermatol. 2009 Nov;129(11):2628-36. doi: 10.1038/jid.2009.108. Epub 2009 Jun 18.
7
OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders.
Nucleic Acids Res. 2015 Jan;43(Database issue):D789-98. doi: 10.1093/nar/gku1205. Epub 2014 Nov 26.
8
Gene- and Disease-Based Expansion of the Knowledge on Inborn Errors of Immunity.
Front Immunol. 2019 Oct 21;10:2475. doi: 10.3389/fimmu.2019.02475. eCollection 2019.
9
The unsolved rare genetic disease atlas? An analysis of the unexplained phenotypic descriptions in OMIM®.
Am J Med Genet C Semin Med Genet. 2018 Dec;178(4):458-463. doi: 10.1002/ajmg.c.31662.

引用本文的文献

1
eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs.
J Biomed Inform. 2015 Dec;58:226-234. doi: 10.1016/j.jbi.2015.10.010. Epub 2015 Oct 30.
3
A vector space model approach to identify genetically related diseases.
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):249-54. doi: 10.1136/amiajnl-2011-000480. Epub 2012 Jan 6.
4
CSI-OMIM--Clinical Synopsis Search in OMIM.
BMC Bioinformatics. 2011 Mar 1;12:65. doi: 10.1186/1471-2105-12-65.
5
Mining human phenome to investigate modularity of complex disorders.
Summit Transl Bioinform. 2008 Mar 1;2008:31-5.
6
Improved mutation tagging with gene identifiers applied to membrane protein stability prediction.
BMC Bioinformatics. 2009 Aug 27;10 Suppl 8(Suppl 8):S3. doi: 10.1186/1471-2105-10-S8-S3.
7
Gendoo: functional profiling of gene and disease features using MeSH vocabulary.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W166-9. doi: 10.1093/nar/gkp483. Epub 2009 Jun 4.
8
Computational approaches to phenotyping: high-throughput phenomics.
Proc Am Thorac Soc. 2007 Jan;4(1):18-25. doi: 10.1513/pats.200607-142JG.
9
Bioinformatics methods for identifying candidate disease genes.
Hum Genomics. 2006 Jun;2(6):429-32. doi: 10.1186/1479-7364-2-6-429.
10
Inherited disorder phenotypes: controlled annotation and statistical analysis for knowledge mining from gene lists.
BMC Bioinformatics. 2005 Dec 1;6 Suppl 4(Suppl 4):S18. doi: 10.1186/1471-2105-6-S4-S18.

本文引用的文献

2
Bioinformatics in the post-sequence era.
Nat Genet. 2003 Mar;33 Suppl:305-10. doi: 10.1038/ng1109.
5
Butyrylcholinesterase activity and risk factors for coronary artery disease.
Scand J Clin Lab Invest. 2002;62(5):399-404. doi: 10.1080/00365510260296564.
6
DiGeorge syndrome: the use of model organisms to dissect complex genetics.
Hum Mol Genet. 2002 Oct 1;11(20):2363-9. doi: 10.1093/hmg/11.20.2363.
8
Complex-trait genetics: emergence of multivariate strategies.
Nat Rev Neurosci. 2002 Jun;3(6):478-85. doi: 10.1038/nrn847.
10
Molecular portraits of human breast tumours.
Nature. 2000 Aug 17;406(6797):747-52. doi: 10.1038/35021093.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验