Suppr超能文献

医生不遵守电子药物警报的原因。

Reasons for physician non-adherence to electronic drug alerts.

作者信息

Taylor Laurel K, Tamblyn Robyn

机构信息

Faculty of Management, McGill University, Montreal, Quebec, Canada.

出版信息

Stud Health Technol Inform. 2004;107(Pt 2):1101-5.

Abstract

CONTEXT

Many adverse drug errors may be prevented through electronic order entry systems that provide decision support to physicians by screening prescriptions for dosing errors, drug-disease, drug-allergy and drug-drug interactions. The adherence to such decision aids is varied and the reasons for this variance not well understood.

OBJECTIVE

To assess the feasibility and performance auto-mated drug alerts within an electronic decision support system for physician prescribing.

METHODS

Drug alert data were collected from a pilot project with 30 participating general practitioners who were provided with interactive electronic prescription capabilities through a personal digital assistant (PDA).

RESULTS

66,642 electronic prescriptions resulted in a total of 1,869 drug alerts. The most common alert types were analysed, along with reasons for non-adherence to automated drug alerts.

CONCLUSIONS

Non-adherence to alert information appears to be associated with additional knowledge of the clinical situation, beyond that inherent in the decision support tool, for the specific patient context. Further work is required to understand how best to provide this type of support to physicians.

摘要

背景

许多药物不良事件可以通过电子医嘱录入系统来预防,该系统通过筛查处方中的剂量错误、药物-疾病、药物-过敏及药物-药物相互作用为医生提供决策支持。对这类决策辅助工具的依从性各不相同,且造成这种差异的原因尚不清楚。

目的

评估电子决策支持系统中自动药物警示功能在医生开处方时的可行性和性能。

方法

从一个试点项目收集药物警示数据,该项目有30名参与的全科医生,通过个人数字助理(PDA)为他们提供交互式电子处方功能。

结果

66642份电子处方共产生了1869次药物警示。分析了最常见的警示类型以及不遵守自动药物警示的原因。

结论

对于特定患者情况,不遵守警示信息似乎与超出决策支持工具固有临床情况的额外知识有关。需要进一步开展工作以了解如何最好地为医生提供此类支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验