Suppr超能文献

药物相互作用警报系统知识数据库的分析与重新设计

Analysis and redesign of a knowledge database for a drug-drug interactions alert system.

作者信息

Luna Daniel, Otero Victoria, Canosa Daniela, Montenegro Sergio, Otero Paula, de Quirós Fernan Gonzalez Bernaldo

机构信息

Department of Medical Informatics, Hospital Italiano de Buenos Aires, Argentina.

出版信息

Stud Health Technol Inform. 2007;129(Pt 2):885-9.

Abstract

Physicians tend to ignore drug-drug interactions alerts, this is due to the large amount of irrelevant interactions displayed and the interface in which these alerts are shown. The high rate of clinically inadequate alerts produce "alerts fatigue". This high number of incorrect alerts predisposes physicians to underestimate the electronic prescription systems as useful tools in their practice. We decided to analyze and redesign our drug-drug interactions alerting system knowledge database. In order to do so, we cleaned our knowledge database according to the clinical significance of drug-drug interactions. New drug interactions taxonomy was created in four levels based on clinical significance and the recommendations given in each single monograph of interaction. We proceeded to recategorize the alerts as Active, which present themselves to the physician interrupting the prescribing process, or Passive, which allow physicians to accept the recommendations, and adopt some action in order of minimizing the interaction risks.

摘要

医生往往会忽略药物相互作用警报,这是因为显示的大量不相关相互作用以及这些警报的显示界面。临床不充分警报的高发生率会导致“警报疲劳”。如此大量的错误警报使医生倾向于低估电子处方系统在其临床实践中的有用性。我们决定分析并重新设计我们的药物相互作用警报系统知识数据库。为此,我们根据药物相互作用的临床意义清理了我们的知识数据库。基于临床意义和每个相互作用专论中给出的建议,创建了四个级别的新药物相互作用分类法。我们将警报重新分类为主动警报(在开处方过程中会打断医生并呈现给医生)或被动警报(允许医生接受建议并采取一些行动以尽量降低相互作用风险)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验