Dawson Dana, Lygate Craig A, Saunders James, Schneider Jürgen E, Ye Xujiong, Hulbert Karen, Noble J Alison, Neubauer Stefan
Department of Cardiovascular Medicine, University of Oxford, Oxford, England.
Circulation. 2004 Sep 21;110(12):1632-7. doi: 10.1161/01.CIR.0000142049.14227.AD. Epub 2004 Sep 13.
Insufficient techniques exist for rapid and reliable phenotype characterization of genetically manipulated mouse models of cardiac dysfunction. We developed a new, robust, 3-dimensional echocardiography (3D-echo) technique and hypothesized that this 3D-echo technique is as accurate as magnetic resonance imaging (MRI) and histology for assessment of left ventricular (LV) volume, ejection fraction, mass, and infarct size in normal and chronically infarcted mice.
Using a high-frequency, 7/15-MHz, linear-array ultrasound transducer, we acquired ECG and respiratory-gated, 500-microm consecutive short-axis slices of the murine heart within 4 minutes. The short-axis movies were reassembled off-line in a 3D matrix by using the measured platform locations to position each slice in 3D. Epicardial and endocardial heart contours were manually traced, and a B-spline surface was fitted to the delineated image curves to reconstruct the heart volumes. Excellent correlations were obtained between 3D-echo and MRI for LV end-systolic volumes (r=0.99, P<0.0001), LV end-diastolic volumes (r=0.99, P<0.0001), ejection fraction (r=0.99, P<0.0001), LV mass (r=0.94, P<0.0019), and infarct size (r=0.98, P<0.0001). Also, excellent correlations were found between the 3D-echo-derived LV mass and necropsy LV mass in normal mice (r=0.99, P<0.0001), as well as for 3D-echo-derived infarct size and histologically determined infarct size (r=0.99, P<0.0001) in mice with chronic heart failure. Bland-Altman analysis showed excellent limits of agreement between techniques for all measured parameters.
This new, fast, and highly reproducible 3D-echo technique should be of widespread applicability for high-throughput murine cardiac phenotyping studies.
目前用于对心脏功能障碍的基因操作小鼠模型进行快速可靠的表型特征分析的技术尚不完善。我们开发了一种新的、强大的三维超声心动图(3D-回声)技术,并假设这种3D-回声技术在评估正常和慢性梗死小鼠的左心室(LV)容积、射血分数、质量和梗死面积方面与磁共振成像(MRI)和组织学一样准确。
使用高频7/15-MHz线性阵列超声换能器,我们在4分钟内采集了小鼠心脏的心电图和呼吸门控、500微米连续短轴切片。通过使用测量的平台位置将每个切片定位到三维空间中,短轴电影在离线状态下重新组装成三维矩阵。手动描绘心外膜和心内膜心脏轮廓,并将B样条曲面拟合到描绘的图像曲线上以重建心脏容积。3D-回声与MRI在左心室收缩末期容积(r=0.99,P<0.0001)、左心室舒张末期容积(r=0.99,P<0.0001)、射血分数(r=0.99,P<0.0001)、左心室质量(r=0.94,P<0.0019)和梗死面积(r=0.98,P<0.0001)方面获得了极好的相关性。此外,在正常小鼠中,3D-回声得出的心质量与尸检心质量之间(r=0.99,P<0.0001),以及在慢性心力衰竭小鼠中,3D-回声得出的梗死面积与组织学确定的梗死面积之间(r=0.99,P<0.0001)也发现了极好的相关性。Bland-Altman分析显示,所有测量参数的技术之间具有极好的一致性界限。
这种新的、快速且高度可重复的3D-回声技术应广泛适用于高通量小鼠心脏表型研究。