Riley Bruce B, Chiang Ming-Yung, Storch Elly M, Heck Rebecca, Buckles Gerri R, Lekven Arne C
Biology Department, Texas A&M University, College Station, Texas 77843-3258, USA.
Dev Dyn. 2004 Oct;231(2):278-91. doi: 10.1002/dvdy.20133.
The vertebrate hindbrain develops from a series of segments (rhombomeres) distributed along the anteroposterior axis. We are studying the roles of Wnt and Delta-Notch signaling in maintaining rhombomere boundaries as organizing centers in the zebrafish hindbrain. Several wnt genes (wnt1, wnt3a, wnt8b, and wnt10b) show elevated expression at rhombomere boundaries, whereas several delta genes (dlA, dlB, and dlD) are expressed in transverse stripes flanking rhombomere boundaries. Partial disruption of Wnt signaling by knockdown of multiple wnt genes, or the Wnt mediator tcf3b, ablates boundaries and associated cell types. Expression of dlA is chaotic, and cell types associated with rhombomere centers are disorganized. Similar patterning defects are observed in segmentation mutants spiel-ohne-grenzen (spg) and valentino (val), which fail to form rhombomere boundaries due to faulty interactions between adjacent rhombomeres. Stripes of wnt expression are variably disrupted, with corresponding disturbances in metameric patterning. Mutations in dlA or mind bomb (mib) disrupt Delta-Notch signaling and cause a wide range of patterning defects in the hindbrain. Stripes of wnt1 are initially normal but subsequently dissipate, and metameric patterning becomes increasingly disorganized. Driving wnt1 expression using a heat-shock construct partially rescues metameric patterning in mib mutants. Thus, rhombomere boundaries act as Wnt signaling centers required for precise metameric patterning, and Delta signals from flanking cells provide feedback to maintain wnt expression at boundaries. Similar feedback mechanisms operate in the Drosophila wing disc and vertebrate limb bud, suggesting coaptation of a conserved signaling module that spatially organizes cells in complex organ systems.
脊椎动物的后脑由沿前后轴分布的一系列节段(菱脑节)发育而来。我们正在研究Wnt和Delta-Notch信号通路在维持菱脑节边界作为斑马鱼后脑组织中心方面的作用。几个Wnt基因(wnt1、wnt3a、wnt8b和wnt10b)在菱脑节边界处表达升高,而几个Delta基因(dlA、dlB和dlD)则在菱脑节边界两侧的横向条带中表达。通过敲低多个Wnt基因或Wnt介导因子tcf3b对Wnt信号通路进行部分破坏,会消除边界及相关细胞类型。dlA的表达变得混乱,与菱脑节中心相关的细胞类型也变得无序。在分割突变体spiel-ohne-grenzen(spg)和valentino(val)中观察到类似的模式缺陷,由于相邻菱脑节之间的相互作用错误,它们无法形成菱脑节边界。Wnt表达条带受到不同程度的破坏,同时体节模式也出现相应紊乱。dlA或mind bomb(mib)中的突变会破坏Delta-Notch信号通路,并在后脑导致广泛的模式缺陷。wnt1的条带最初正常,但随后消失,体节模式变得越来越无序。使用热休克构建体驱动wnt1表达可部分挽救mib突变体中的体节模式。因此,菱脑节边界作为精确体节模式形成所需的Wnt信号中心,来自侧翼细胞的Delta信号提供反馈以维持边界处的wnt表达。类似的反馈机制在果蝇翅芽和脊椎动物肢芽中起作用,这表明一个保守的信号模块被共同采用,该模块在空间上组织复杂器官系统中的细胞。