Klein Oliver, Aguilar-Parrilla Francisco, Lopez Juan Miguel, Jagerovic Nadine, Elguero José, Limbach Hans-Heinrich
Contribution from the Institut für Chemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany.
J Am Chem Soc. 2004 Sep 22;126(37):11718-32. doi: 10.1021/ja0493650.
Using dynamic solid state (15)N CPMAS NMR spectroscopy (CP = cross polarization, MAS = magic angle spinning), the kinetics of the degenerate intermolecular double and quadruple proton and deuteron transfers in the cyclic dimer of (15)N labeled polycrystalline 3,5-diphenyl-4-bromopyrazole (DPBrP) and in the cyclic tetramer of (15)N labeled polycrystalline 3,5-diphenylpyrazole (DPP) have been studied in a wide temperature range at different deuterium fractions in the mobile proton sites. Rate constants were measured on a millisecond time scale by line shape analysis of the doubly (15)N labeled compounds, and by magnetization transfer experiments on a second timescale of the singly (15)N labeled compounds in order to minimize the effects of proton-driven (15)N spin diffusion. For DPBrP the multiple kinetic HH/HD/DD isotope effects could be directly obtained. By contrast, four rate constants k(1) to k(4) were obtained for DPP at different deuterium fractions. Whereas k(1) corresponds to the rate constant k(HHHH) of the HHHH isotopolog, an appropriate kinetic reaction model was needed for the kinetic assignment of the other rate constants. Using the model described by Limbach, H. H.; Klein, O.; Lopez Del Amo, J. M.; Elguero, J. Z. Phys. Chem. 2004,218, 17, a concerted quadruple proton-transfer mechanism as well as a stepwise consecutive single transfer mechanism could be excluded. By contrast, using the kinetic assignment k(2) approximately k(3) approximately k(HHHD) approximately k(HDHD) and k(3) approximately k(HDDD) approximately k(DDDD), the results could be explained in terms of a two-step process involving a zwitterionic intermediate. In this mechanism, each reaction step involves the concerted transfer of two hydrons, giving rise to primary kinetic HH/HD/DD isotope effects, whereas the nontransferred hydrons only contribute small secondary effects, which are not resolved experimentally. By contrast, the multiple kinetic isotope effects of the double proton transfer in DPBrP and of the triple proton proton transfer in cyclic pyrazole trimers studied previously indicate concerted transfer processes. Thus, between n = 3 and 4 a switch of the reaction mechanism takes place. This switch is rationalized in terms of hydrogen bond compression effects associated with the multiple proton transfers. The Arrhenius curves of all processes are nonlinear and indicate tunneling processes at low temperatures. In a preliminary analysis, they are modeled in terms of the Bell-Limbach tunneling model.
利用动态固态(15)N交叉极化魔角旋转核磁共振光谱(CP =交叉极化,MAS =魔角旋转),研究了(15)N标记的多晶3,5 -二苯基- 4 -溴吡唑(DPBrP)的环状二聚体以及(15)N标记的多晶3,5 -二苯基吡唑(DPP)的环状四聚体中简并分子间双质子和四质子以及氘转移的动力学,研究温度范围很宽,且移动质子位点具有不同的氘分数。通过对双(15)N标记化合物的线形分析,以及对单(15)N标记化合物在秒级时间尺度上的磁化转移实验来测量速率常数,以尽量减少质子驱动的(15)N自旋扩散的影响。对于DPBrP,可以直接获得多重动力学HH/HD/DD同位素效应。相比之下,在不同氘分数下,DPP获得了四个速率常数k(1)到k(4)。虽然k(1)对应于HHHH同位素异构体的速率常数k(HHHH),但其他速率常数的动力学归属需要一个合适的动力学反应模型。使用Limbach, H. H.; Klein, O.; Lopez Del Amo, J. M.; Elguero, J. Z. Phys. Chem. 2004,218, 17描述的模型,可以排除协同四质子转移机制以及逐步连续单转移机制。相比之下,使用动力学归属k(2)≈k(3)≈k(HHHD)≈k(HDHD)以及k(3)≈k(HDDD)≈k(DDDD),结果可以用一个涉及两性离子中间体的两步过程来解释。在这种机制中,每个反应步骤都涉及两个氢的协同转移,产生主要的动力学HH/HD/DD同位素效应,而未转移的氢只产生小的二级效应,实验上无法分辨。相比之下,先前研究的DPBrP中双质子转移以及环状吡唑三聚体中三质子转移的多重动力学同位素效应表明是协同转移过程。因此,在n = 3和4之间发生了反应机制的转变。这种转变可以根据与多质子转移相关的氢键压缩效应来合理化。所有过程的阿仑尼乌斯曲线都是非线性的,表明在低温下存在隧穿过程。在初步分析中,它们根据贝尔-林巴赫隧穿模型进行建模。