Shi Qicun, Kais Sabre
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
J Chem Phys. 2004 Sep 22;121(12):5611-7. doi: 10.1063/1.1785773.
We have developed the finite size scaling method to treat the criticality of Shannon-information entropy for any given quantum Hamiltonian. This approach gives very accurate results for the critical parameters by using a systematic expansion in a finite basis set. To illustrate this approach we present a study to estimate the critical exponents of the Shannon-information entropy S approximately (lambda-lambda(c))(alpha(S) ), the electronic energy E approximately (lambda-lambda(c))(alpha(E) ), and the correlation length xi approximately mid R:lambda-lambda(c)mid R:(-nu) for atoms with the variable lambda=1/Z, which is the inverse of the nuclear charge Z. This was realized by approximating the multielectron atomic Hamiltonian with a one-electron model Hamiltonian. This model is very accurate for describing the electronic structure of the atoms near their critical points. For several atoms in their ground electronic states, we have found that the critical exponents (alpha(E),nu,alpha(S)) for He (Z=2), C (Z=6), N (Z=7), F (Z=9), and Ne (Z=10), respectively, are (1, 0, 0). At the critical points lambda(c)=1/Z(c), the bound state energies become absorbed or degenerate with continuum states and the entropies reach their maximum values, indicating a maximal delocalization of the electronic wave function.
我们已经开发出有限尺寸标度方法,用于处理任意给定量子哈密顿量的香农信息熵的临界性。通过在有限基集中进行系统展开,这种方法能给出关于临界参数的非常精确的结果。为了说明这种方法,我们进行了一项研究,以估计香农信息熵(S)近似为((\lambda - \lambda_c)^{\alpha_S})、电子能量(E)近似为((\lambda - \lambda_c)^{\alpha_E})以及关联长度(\xi)近似为(\vert R:\lambda - \lambda_c\vert^{- \nu})的临界指数,其中(\lambda = 1/Z)是核电荷(Z)的倒数,适用于具有可变(\lambda)的原子。这是通过用单电子模型哈密顿量近似多电子原子哈密顿量来实现的。该模型对于描述原子临界点附近的电子结构非常准确。对于处于基态电子态的几个原子,我们发现氦((Z = 2))、碳((Z = 6))、氮((Z = 7))、氟((Z = 9))和氖((Z = 10))的临界指数((\alpha_E, \nu, \alpha_S))分别为((1, 0, 0))。在临界点(\lambda_c = 1/Z_c)处,束缚态能量与连续态发生吸收或简并,熵达到最大值,这表明电子波函数的最大离域化。