Antillon Edwin, Wehefritz-Kaufmann Birgit, Kais Sabre
Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 2):036706. doi: 10.1103/PhysRevE.85.036706. Epub 2012 Mar 15.
Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic-structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, local density approximation, and an "exact" formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.
薛定谔方程的有限尺寸标度是一种计算给定哈密顿量量子临界参数的系统方法。通过使用全局基函数类型的系统展开,该方法已被证明能给出非常精确的临界参数结果。最近,有限元方法被证明是一种用于具有可变实空间分辨率的从头算电子结构计算的强大数值方法。在这项工作中,我们展示了如何通过将有限元方法(FEM)与有限尺寸标度(FSS)相结合,使用不同的从头算近似和精确公式来获得量子临界参数。临界参数可以是原子核电荷、核间距、电子密度、无序度、晶格结构以及原子、分子系统稳定性和扩展系统量子相变的外部场。为了说明这种方法的有效性,我们提供了将有限元方法应用于具有不同核电荷的双电子原子近似解的详细计算;这些计算包括哈特里 - 福克方法、局域密度近似以及使用有限元方法的“精确”公式。然后,我们使用有限尺寸标度方法来确定其稳定性的临界核电荷;这里,系统的大小与计算中使用的元素数量有关。结果与之前的斯莱特基组计算结果非常吻合,并表明通过使用从头算计算将有限尺寸标度与有限元方法相结合来获得量子临界参数是可行的。这种组合方法为描述材料和扩展系统的量子相变提供了一种很有前景的第一性原理方法。