Ghosal Subhas, Mahapatra Susanta
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
J Chem Phys. 2004 Sep 22;121(12):5740-53. doi: 10.1063/1.1784781.
We investigate the vibronic and spin-orbit (SO) coupling effects in the state-selected dynamics of the title reaction with the aid of a time-dependent wave packet approach. The ab initio potential energy surfaces of Capecchi and Werner [Science 296, 715 (2002)] have been employed for this purpose. Collinear approach of the Cl((2)P) atom to the H(2) molecule splits the degeneracy of the (2)P state and gives rise to (2)Sigma and (2)Pi electronic states. These two surfaces form a conical intersection at this geometry. These states transform as 1 (2)A('), 1 (2)A("), and 2 (2)A('), respectively, at the nonlinear configurations of the nuclei. In addition, the SO interaction due to Cl atom further splits these states into (2)Sigma(1/2), (2)Pi(3/2), and (2)Pi(1/2) components at the linear geometry. The ground-state reagent Cl((2)P(3/2))+H(2) correlates with (2)Sigma(1/2) and (2)Pi(3/2), where as the SO excited reagent Cl(*)((2)P(1/2))+H(2) correlates with (2)Pi(1/2) at the linear geometry. In order to elucidate the impact of the vibronic and SO coupling effects on the initial state-selected reactivity of these electronic states we carry out quantum scattering calculations based on a flux operator formalism and a time-dependent wave packet approach. In this work, total reaction probabilities and the time dependence of electronic population of the system by initiating the reaction on each of the above electronic states are presented. The role of conical intersection alone on the reaction dynamics is investigated with a coupled two-state model and for the total angular momentum J=0 (neglecting the electronic orbital angular momentum) both in a diabatic as well as in the adiabatic electronic representation. The SO interaction is then included and the dynamics is studied with a coupled three-state model comprising six diabatic surfaces for the total angular momentum J=0.5 neglecting the Coriolis Coupling terms of the Hamiltonian. Companion calculations are carried out for the uncoupled adiabatic and diabatic surfaces in order to explicitly reveal the impact of two different surface coupling mechanisms in the dynamics of this prototypical reaction.
我们借助含时波包方法研究了上述反应态选择动力学中的振转耦合和自旋 - 轨道(SO)耦合效应。为此采用了卡佩奇和维尔纳[《科学》296, 715 (2002)]的从头算势能面。Cl((2)P)原子与H(2)分子的共线接近方式打破了(2)P态的简并性,并产生了(2)Σ和(2)Π电子态。这两个势能面在该几何构型处形成一个锥形交叉点。在核的非线性构型下,这些态分别变换为1 (2)A(')、1 (2)A(")和2 (2)A(')。此外,由于Cl原子引起的SO相互作用在直线几何构型下进一步将这些态分裂为(2)Σ(1/2)、(2)Π(3/2)和(2)Π(1/2)分量。基态反应物Cl((2)P(3/2)) + H(2)与(2)Σ(1/2)和(2)Π(3/2)相关,而SO激发的反应物Cl(*)((2)P(1/2)) + H(2)在直线几何构型下与(2)Π(1/2)相关。为了阐明振转耦合和SO耦合效应对这些电子态初始态选择反应性的影响,我们基于通量算符形式和含时波包方法进行了量子散射计算。在这项工作中,给出了通过在上述每个电子态上引发反应得到的总反应概率以及系统电子布居的时间依赖性。利用耦合双态模型研究了仅锥形交叉点对反应动力学的作用,并且对于总角动量J = 0(忽略电子轨道角动量),在非绝热以及绝热电子表示下进行了研究。然后考虑SO相互作用,并利用包含六个非绝热面的耦合三态模型研究总角动量J = 0.5时的动力学,忽略哈密顿量的科里奥利耦合项。对未耦合的绝热面和非绝热面进行了配套计算,以便明确揭示两种不同表面耦合机制对这个典型反应动力学的影响。