Suppr超能文献

从显性遗传标记估计成对相关性。

Estimating pairwise relatedness from dominant genetic markers.

作者信息

Wang J

机构信息

Institute of Zoology, Zoological Society of London, London NW1 4RY, UK.

出版信息

Mol Ecol. 2004 Oct;13(10):3169-78. doi: 10.1111/j.1365-294X.2004.02298.x.

Abstract

Knowledge of the genetic relatedness between a pair of individuals is important in many research areas of quantitative genetics, conservation genetics, evolution and ecology. Many estimators have been developed to estimate such pairwise relatedness (r) using codominant markers, such as microsatellites and enzymes. In contrast, only two estimators are proposed to use dominant markers, such as random amplified polymorphic DNAs (RAPDs) and amplified fragment length polymorphisms (AFLPs), in relatedness inference. They are both biased estimators, and their statistical properties and robustness to the sampling errors in allele frequency have not been investigated. In this short paper, I propose two new pairwise relatedness estimators for dominant markers, and compare them in precision, accuracy and robustness to sampling with the two previous estimators using simulations. It was found that the new estimator based on the least squares approach is unbiased when allele frequencies are known or estimated from a sample without correcting for sampling effects. It has, however, a low precision and as a result, an intermediate overall performance among the four estimators in terms of the mean squared deviation (MSD) of estimates from actual values of r. The new estimator based on a similarity index is slightly biased but has generally the lowest MSD among the four estimators compared, regardless of the number of loci, type of actual relationships, allele frequencies known or estimated from samples. Simulations also show that the confidence intervals estimated by bootstrapping are appropriate for different estimators provided that the number of loci used in the estimation is not small.

摘要

了解一对个体之间的遗传相关性在数量遗传学、保护遗传学、进化和生态学等许多研究领域都很重要。已经开发了许多估计器,用于使用共显性标记(如微卫星和酶)来估计这种成对相关性(r)。相比之下,在相关性推断中,仅提出了两种估计器用于显性标记,如随机扩增多态性DNA(RAPD)和扩增片段长度多态性(AFLP)。它们都是有偏估计器,并且尚未研究它们的统计特性以及对等位基因频率抽样误差的稳健性。在这篇短文中,我提出了两种用于显性标记的新的成对相关性估计器,并通过模拟将它们与之前的两种估计器在精度、准确性和抽样稳健性方面进行比较。结果发现,基于最小二乘法的新估计器在等位基因频率已知或从样本中估计而不校正抽样效应时是无偏的。然而,它的精度较低,因此,就估计值与r的实际值的均方偏差(MSD)而言,在四个估计器中总体性能处于中等水平。基于相似性指数的新估计器略有偏差,但在比较的四个估计器中,无论位点数量、实际关系类型、等位基因频率是已知还是从样本中估计,其MSD通常是最低的。模拟还表明,只要估计中使用的位点数量不小,通过自举法估计的置信区间适用于不同的估计器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验