Suppr超能文献

用于成对关系和亲缘关系推断的遗传标记的信息性。

Informativeness of genetic markers for pairwise relationship and relatedness inference.

作者信息

Wang Jinliang

机构信息

Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK.

出版信息

Theor Popul Biol. 2006 Nov;70(3):300-21. doi: 10.1016/j.tpb.2005.11.003. Epub 2006 Jan 4.

Abstract

Measuring the information content of markers in relationship/relatedness inferences is important in selecting highly informative markers to attain a given statistical power with the minimal genotyping effort. Using information-theoretic principles, I introduce the informativeness for relationship (I(R)) and the informativeness for relatedness (I(r)) to measure the amount of information provided by markers in inferring pairwise relationships (R) and relatedness (r), respectively. I also propose a fast and accurate algorithm to calculate the power (PW(R)) of a set of markers in differentiating two candidate relationships, and the reciprocal of the mean squared deviations of relatedness estimates (RMSD) to measure the amount of information of markers actually used by an estimator in estimating relatedness. All of the four measurements (I(R), I(r), PW(R), RMSD) apply to dominant and codominant markers, haploid and diploid individuals, and take into account of mutations and typing errors in data. The statistical properties of the four measurements and their relationships are investigated analytically and are examined by applying these methods to simulated and empirical data.

摘要

在亲缘关系推断中衡量标记的信息含量对于选择高信息量的标记以通过最少的基因分型工作量获得给定的统计功效非常重要。利用信息论原理,我引入了亲缘关系信息量(I(R))和相关性信息量(I(r)),分别用于衡量标记在推断成对亲缘关系(R)和相关性(r)时提供的信息量。我还提出了一种快速准确的算法来计算一组标记区分两种候选关系的功效(PW(R)),以及相关性估计值的均方偏差倒数(RMSD),以衡量估计器在估计相关性时实际使用的标记信息量。所有这四种测量方法(I(R)、I(r)、PW(R)、RMSD)适用于显性和共显性标记、单倍体和二倍体个体,并考虑了数据中的突变和分型错误。对这四种测量方法的统计特性及其关系进行了分析研究,并通过将这些方法应用于模拟数据和实证数据进行了检验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验