Suppr超能文献

酿酒酵母中Yap1转录因子的活性受甲基乙二醛调节,甲基乙二醛是一种源自糖酵解的代谢产物。

Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis.

作者信息

Maeta Kazuhiro, Izawa Shingo, Okazaki Shoko, Kuge Shusuke, Inoue Yoshiharu

机构信息

Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.

出版信息

Mol Cell Biol. 2004 Oct;24(19):8753-64. doi: 10.1128/MCB.24.19.8753-8764.2004.

Abstract

Methylglyoxal (MG) is synthesized during glycolysis, although it inhibits cell growth in all types of organisms. Hence, it has long been asked why such a toxic metabolite is synthesized in vivo. Glyoxalase I is a major enzyme detoxifying MG. Here we show that the Yap1 transcription factor, which is critical for the oxidative-stress response in Saccharomyces cerevisiae, is constitutively concentrated in the nucleus and activates the expression of its target genes in a glyoxalase I-deficient mutant. Yap1 contains six cysteine residues in two cysteine-rich domains (CRDs), i.e., three cysteine residues clustering near the N terminus (n-CRD) and the remaining three cysteine residues near the C terminus (c-CRD). We reveal that any of the three cysteine residues in the c-CRD is sufficient for MG to allow Yap1 to translocate into the nucleus and to activate the expression of its target gene. A Yap1 mutant possessing only one cysteine residue in the c-CRD but no cysteine in the n-CRD and deletion of the basic leucine zipper domain can concentrate in the nucleus with MG treatment. However, substitution of all the cysteine residues in Yap1 abolishes the ability of this transcription factor to concentrate in the nucleus following MG treatment. The redox status of Yap1 is substantially unchanged, and protein(s) interaction with Yap1 through disulfide bond is hardly detected in cells treated with MG. Collectively, neither intermolecular nor intramolecular disulfide bond formation seems to be involved in Yap1 activation by MG. Moreover, we show that nucleocytoplasmic localization of Yap1 closely correlates with growth phase and intracellular MG level. We propose a novel regulatory pathway underlying Yap1 activation by a natural metabolite in the cell.

摘要

甲基乙二醛(MG)在糖酵解过程中合成,尽管它会抑制所有类型生物体中的细胞生长。因此,长期以来人们一直想问,为什么体内会合成这种有毒的代谢物。乙二醛酶I是一种主要的解毒MG的酶。在这里我们表明,对酿酒酵母中的氧化应激反应至关重要的Yap1转录因子,在乙二醛酶I缺陷型突变体中持续集中在细胞核中,并激活其靶基因的表达。Yap1在两个富含半胱氨酸的结构域(CRD)中包含六个半胱氨酸残基,即靠近N端聚集的三个半胱氨酸残基(n-CRD)和靠近C端的其余三个半胱氨酸残基(c-CRD)。我们发现,c-CRD中的三个半胱氨酸残基中的任何一个都足以使MG促使Yap1转运到细胞核并激活其靶基因的表达。在c-CRD中仅具有一个半胱氨酸残基但在n-CRD中没有半胱氨酸且缺失碱性亮氨酸拉链结构域的Yap1突变体,经MG处理后可集中在细胞核中。然而,Yap1中所有半胱氨酸残基的替换消除了该转录因子在MG处理后集中在细胞核中的能力。Yap1的氧化还原状态基本不变,在用MG处理的细胞中几乎检测不到通过二硫键与Yap1相互作用的蛋白质。总体而言,分子间和分子内二硫键的形成似乎都不参与MG对Yap1的激活。此外,我们表明Yap1的核质定位与生长阶段和细胞内MG水平密切相关。我们提出了一种细胞中天然代谢物激活Yap1的新调控途径。

相似文献

2
Glyoxalase system in yeasts: structure, function, and physiology.
Semin Cell Dev Biol. 2011 May;22(3):278-84. doi: 10.1016/j.semcdb.2011.02.002. Epub 2011 Feb 15.
3
Structural basis for redox regulation of Yap1 transcription factor localization.
Nature. 2004 Aug 19;430(7002):917-21. doi: 10.1038/nature02790.
5
Yap1 activation by H2O2 or thiol-reactive chemicals elicits distinct adaptive gene responses.
Free Radic Biol Med. 2011 Jan 1;50(1):1-13. doi: 10.1016/j.freeradbiomed.2010.10.697. Epub 2010 Nov 6.
6
7
Thermodynamic basis for redox regulation of the Yap1 signal transduction pathway.
Biochemistry. 2006 Nov 14;45(45):13409-17. doi: 10.1021/bi061136y.
8
Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2alpha.
Biochem Biophys Res Commun. 2008 Nov 28;376(4):738-42. doi: 10.1016/j.bbrc.2008.09.063. Epub 2008 Sep 21.
9
H2O2 sensing through oxidation of the Yap1 transcription factor.
EMBO J. 2000 Oct 2;19(19):5157-66. doi: 10.1093/emboj/19.19.5157.
10
Chemical dissection of an essential redox switch in yeast.
Chem Biol. 2009 Feb 27;16(2):217-25. doi: 10.1016/j.chembiol.2009.01.003. Epub 2009 Feb 20.

引用本文的文献

1
Physiology and Robustness of Yeasts Exposed to Dynamic pH and Glucose Environments.
Biotechnol Bioeng. 2025 Jul;122(7):1656-1668. doi: 10.1002/bit.28984. Epub 2025 Apr 11.
2
Tracing the intraspecies expansion of glyoxalase genes and their expanding roles across the genus Oryza.
Funct Integr Genomics. 2024 Nov 26;24(6):220. doi: 10.1007/s10142-024-01492-y.
3
The APC/C Activator Cdh1p Plays a Role in Mitochondrial Metabolic Remodelling in Yeast.
Int J Mol Sci. 2023 Feb 18;24(4):4111. doi: 10.3390/ijms24044111.
4
Transcriptional Response of Candida auris to the Mrr1 Inducers Methylglyoxal and Benomyl.
mSphere. 2022 Jun 29;7(3):e0012422. doi: 10.1128/msphere.00124-22. Epub 2022 Apr 27.
5
Mrr1 regulation of methylglyoxal catabolism and methylglyoxal-induced fluconazole resistance in Candida lusitaniae.
Mol Microbiol. 2021 Jan;115(1):116-130. doi: 10.1111/mmi.14604. Epub 2020 Dec 14.
6
Multi-Faceted Systems Biology Approaches Present a Cellular Landscape of Phenolic Compound Inhibition in .
Front Bioeng Biotechnol. 2020 Oct 14;8:539902. doi: 10.3389/fbioe.2020.539902. eCollection 2020.
7
Diabetes promotes invasive pancreatic cancer by increasing systemic and tumour carbonyl stress in Kras mice.
J Exp Clin Cancer Res. 2020 Aug 10;39(1):152. doi: 10.1186/s13046-020-01665-0.
8
Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals.
Front Microbiol. 2019 Mar 19;10:567. doi: 10.3389/fmicb.2019.00567. eCollection 2019.
10
GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance.
Sci Rep. 2018 Apr 3;8(1):5451. doi: 10.1038/s41598-018-23806-4.

本文引用的文献

1
Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast.
Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):327-34. doi: 10.1089/ars.2005.7.327.
3
Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling.
Free Radic Biol Med. 2003 Oct 15;35(8):889-900. doi: 10.1016/s0891-5849(03)00434-9.
4
Redox proteomics: identification of oxidatively modified proteins.
Proteomics. 2003 Jul;3(7):1145-53. doi: 10.1002/pmic.200300435.
5
Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences.
Eukaryot Cell. 2003 Jun;2(3):381-9. doi: 10.1128/EC.2.3.381-389.2003.
6
Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor.
J Biol Chem. 2003 Aug 15;278(33):30896-904. doi: 10.1074/jbc.M303542200. Epub 2003 May 12.
8
Yap1 accumulates in the nucleus in response to carbon stress in Saccharomyces cerevisiae.
Eukaryot Cell. 2003 Feb;2(1):19-26. doi: 10.1128/EC.2.1.19-26.2003.
9
Stationary phase in yeast.
Curr Opin Microbiol. 2002 Dec;5(6):602-7. doi: 10.1016/s1369-5274(02)00377-6.
10
A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation.
Cell. 2002 Nov 15;111(4):471-81. doi: 10.1016/s0092-8674(02)01048-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验