Zhang Lian, Rao Fangwen, Wessel Jennifer, Kennedy Brian P, Rana Brinda K, Taupenot Laurent, Lillie Elizabeth O, Cockburn Myles, Schork Nicholas J, Ziegler Michael G, O'Connor Daniel T
Department of Medicine, University of California at San Diego, 92161, USA.
Physiol Genomics. 2004 Nov 17;19(3):277-91. doi: 10.1152/physiolgenomics.00151.2004. Epub 2004 Sep 14.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, has a common tetranucleotide repeat polymorphism, (TCAT)(n). We asked whether variation at (TCAT)(n) may influence the autonomic nervous system and its response to environmental stress. To understand the role of heredity in such traits, we turned to a human twin study design. Both biochemical and physiological autonomic traits displayed substantial heritability (h(2)), up to h(2) = 56.8 +/- 7.5% (P < 0.0001) for norepinephrine secretion, and h(2) = 61 +/- 6% (P < 0.001) for heart rate. Common (TCAT)(n) alleles, particularly (TCAT)(6) and (TCAT)(10i), predicted such traits (including catecholamine secretion, as well as basal and poststress heart rate) in allele copy number dose-dependent fashion, although in directionally opposite ways, indicating functional allelic heterogeneity. (TCAT)(n) diploid genotypes (e.g., TCAT/TCAT) predicted the same physiological traits but with increased explanatory power for trait variation (in contrast to allele copy number). Multivariate ANOVA documented genetic pleiotropy: joint effects of the (TCAT)(10i) allele on both biochemical (norepinephrine) and physiological (heart rate) traits. (TCAT)(6) allele frequencies were lower in normotensive twins at genetic risk of hypertension, consistent with an effect to protect against later development of hypertension, and suggesting that the traits predicted by these variants in still-normotensive subjects are early, heritable, "intermediate phenotypes" in the pathogenetic scheme for later development of sustained hypertension. We conclude that common allelic variation within the tyrosine hydroxylase locus exerts a powerful, heritable effect on autonomic control of the circulation and that such variation may have implications in later development of cardiovascular disease traits such as hypertension.
酪氨酸羟化酶是儿茶酚胺生物合成中的限速酶,具有常见的四核苷酸重复多态性(TCAT)(n)。我们研究了(TCAT)(n)的变异是否会影响自主神经系统及其对环境应激的反应。为了了解遗传在这些性状中的作用,我们采用了一项人类双胞胎研究设计。生化和生理自主性状均显示出显著的遗传力(h(2)),去甲肾上腺素分泌的遗传力高达h(2)=56.8±7.5%(P<0.0001),心率的遗传力为h(2)=61±6%(P<0.001)。常见的(TCAT)(n)等位基因,尤其是(TCAT)(6)和(TCAT)(10i),以等位基因拷贝数剂量依赖的方式预测这些性状(包括儿茶酚胺分泌以及基础和应激后心率),尽管方向相反,表明存在功能性等位基因异质性。(TCAT)(n)二倍体基因型(例如,TCAT/TCAT)预测相同的生理性状,但对性状变异具有更高的解释力(与等位基因拷贝数相比)。多变量方差分析记录了遗传多效性:(TCAT)(10i)等位基因对生化(去甲肾上腺素)和生理(心率)性状的联合作用。在有高血压遗传风险的正常血压双胞胎中,(TCAT)(6)等位基因频率较低,这与预防后期高血压发展的作用一致,并表明这些变体在仍为正常血压的受试者中预测的性状是持续性高血压后期发病机制中的早期、可遗传的“中间表型”。我们得出结论,酪氨酸羟化酶基因座内的常见等位基因变异对循环系统的自主控制具有强大的遗传效应,并且这种变异可能对心血管疾病性状(如高血压)的后期发展具有影响。