Suppr超能文献

Influence of pH on the Mn2+ activation of and binding to yeast enolase: a functional study.

作者信息

Lee B H, Nowak T

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556.

出版信息

Biochemistry. 1992 Feb 25;31(7):2165-71. doi: 10.1021/bi00122a038.

Abstract

The influence of pH on the activation of yeast enolase by Mn2+ was measured by steady-state kinetics. The pH influence on the binding of Mn2+ to apoenolase and the enolase-substrate complex was measured by EPR spectroscopy. At pH values above 6.6, activation by Mn2+ is fit by Michaelis-Menten kinetics, but at higher concentrations of Mn2+, inhibition is observed. Under conditions analogous to the kinetic studies, the enzyme binds two Mn2+ per dimer with a Kd in the micromolar range. In the presence of the substrate 2-phosphoglycerate, three thermodynamically distinct cation binding sites per monomer are detected and the binding constants are determined by a fit to the data. As the pH decreases, the reaction velocity decreases and the cation inhibition becomes minimal. Under these conditions, only two Mn2+ binding sites per monomer are observed; the third site must be the inhibitory site. The velocity and kinetic constants are minimally affected by buffer except at pH 5.8 with PIPES. Under these conditions, the velocity is only about 40% that observed with other buffers and only a single binding site for Mn2+ per monomer is detected in the presence or absence of substrate. A direct role in the catalytic mechanism by the second cation is called to question. The binding constant for Mn2+ at site I is independent of pH over the range from 7.5 to 5.2, and the binding at site II increases only slightly over this same pH range. These results indicate that the cation sites at positions I and II contain ligands that are pH independent over this range.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验