Pucci Biagio, De Felice Mariarita, Rossi Mosè, Onesti Silvia, Pisani Francesca M
Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy.
J Biol Chem. 2004 Nov 19;279(47):49222-8. doi: 10.1074/jbc.M408967200. Epub 2004 Sep 14.
Herein we report the identification of amino acids of the Sulfolobus solfataricus mini-chromosome maintenance (MCM)-like DNA helicase (SsoMCM), which are critical for DNA binding/remodeling. The crystallographic structure of the N-terminal portion (residues 2-286) of the Methanothermobacter thermoautotrophicum MCM protein revealed a dodecameric assembly with two hexameric rings in a head-to-head configuration and a positively charged central channel proposed to encircle DNA molecules. A structure-guided alignment of the M. thermoautotrophicum and S. solfataricus MCM sequences identified positively charged amino acids in SsoMCM that could point to the center of the channel. These residues (Lys-129, Lys-134, His-146, and Lys-194) were changed to alanine. The purified mutant proteins were all found to form homo-hexamers in solution and to retain full ATPase activity. K129A, H146A, and K194A SsoMCMs are unable to bind DNA either in single- or double-stranded form in band shift assays and do not display helicase activity. In contrast, the substitution of lysine 134 to alanine affects only binding to duplex DNA molecules, whereas it has no effect on binding to single-stranded DNA and on the DNA unwinding activity. These results have important implications for the understanding of the molecular mechanism of the MCM DNA helicase action.
在此,我们报告了嗜热栖热菌微小染色体维持(MCM)样DNA解旋酶(SsoMCM)中对DNA结合/重塑至关重要的氨基酸的鉴定。嗜热栖热菌MCM蛋白N端部分(第2至286位残基)的晶体结构显示,其为由两个头对头排列的六聚体环组成的十二聚体组装体,且提出有一个带正电荷的中央通道环绕DNA分子。嗜热栖热菌和嗜热栖硫叶菌MCM序列的结构引导比对确定了SsoMCM中可能指向通道中心的带正电荷氨基酸。这些残基(赖氨酸-129、赖氨酸-134、组氨酸-146和赖氨酸-194)被替换为丙氨酸。纯化的突变蛋白均被发现可在溶液中形成同型六聚体并保留完整的ATP酶活性。在凝胶迁移实验中,K129A、H146A和K194A SsoMCM无法以单链或双链形式结合DNA,且不显示解旋酶活性。相比之下,将赖氨酸134替换为丙氨酸仅影响与双链DNA分子的结合,而对与单链DNA的结合及DNA解旋活性没有影响。这些结果对理解MCM DNA解旋酶作用的分子机制具有重要意义。