McKenzie D J, Wong S, Randall D J, Egginton S, Taylor E W, Farrell A P
School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
J Exp Biol. 2004 Oct;207(Pt 21):3629-37. doi: 10.1242/jeb.01199.
Teleost fish possess discrete blocks of oxidative red muscle (RM) and glycolytic white muscle, whereas tetrapod skeletal muscles are mixed oxidative/glycolytic. It has been suggested that the anatomy of RM in teleost fish could lead to higher intramuscular O2 partial pressures (PO2) than in mammalian skeletal muscles. This study provides the first direct experimental support for this suggestion by using novel optical fibre sensors to discover a mean (+/- S.E.M., N=6) normoxic steady-state red muscle PO2 (PrmO2) of 61+/-10 mmHg (1 mmHg=133.3 Pa) in free-swimming rainbow trout Oncorhynchus mykiss. This is significantly higher than literature reports for mammalian muscles, where the PO2 never exceeds 40 mmHg. Aerobic RM powers sustained swimming in rainbow trout. During graded incremental exercise, PrmO2 declined from 62+/-5 mmHg at the lowest swim speed down to 45+/-3 mmHg at maximum rates of aerobic work, but then rose again to 51+/-5 mmHg at exhaustion. These measurements of PrmO2 during exercise indicated, therefore, that O2 supply to the RM was not a major limiting factor at exhaustion in trout. The current study found no evidence that teleost haemoglobins with a Root effect cause extremely elevated O2 tensions in aerobic tissues. Under normoxic conditions, PrmO2 was significantly lower than arterial PO2 (119+/-5 mmHg), and remained lower when the arterial to tissue PO2 gradient was reduced by exposure to mild hypoxia. When two sequential levels of mild hypoxia (30 min at a water PO2 of 100 mmHg then 30 min at 75 mmHg) caused PaO2 to fall to 84+/-2 mmHg then 61+/-3 mmHg, respectively, this elicited simultaneous reductions in PrmO2,to 51+/-6 mmHg then 41+/-5 mmHg, respectively. Although these hypoxic reductions in PrmO2 were significantly smaller than those in PaO2, the effect could be attributed to the sigmoid shape of the trout haemoglobin-O2 dissociation curve.
硬骨鱼具有离散的氧化型红肌(RM)块和糖酵解型白肌,而四足动物的骨骼肌是氧化/糖酵解混合型的。有人提出,硬骨鱼RM的解剖结构可能导致其肌内氧分压(PO2)高于哺乳动物的骨骼肌。本研究通过使用新型光纤传感器,首次为这一观点提供了直接的实验支持,发现自由游动的虹鳟鱼Oncorhynchus mykiss的平均(±标准误,N = 6)常氧稳态红肌PO2(PrmO2)为61±10 mmHg(1 mmHg = 133.3 Pa)。这显著高于哺乳动物肌肉的文献报道值,哺乳动物肌肉的PO2从未超过40 mmHg。有氧RM为虹鳟鱼的持续游泳提供动力。在分级递增运动期间,PrmO2从最低游泳速度时的62±5 mmHg下降至有氧工作最大速率时的45±3 mmHg,但在力竭时又升至51±5 mmHg。因此,这些运动期间PrmO2的测量结果表明,在虹鳟鱼力竭时,向RM的氧气供应不是主要限制因素。当前研究没有发现证据表明具有鲁特效应的硬骨鱼血红蛋白会导致有氧组织中的氧张力极度升高。在常氧条件下,PrmO2显著低于动脉PO2(119±5 mmHg),并且当通过暴露于轻度缺氧降低动脉与组织PO2梯度时,PrmO2仍然较低。当两个连续水平的轻度缺氧(在水PO2为100 mmHg下30分钟,然后在75 mmHg下30分钟)分别导致动脉血氧分压(PaO2)降至84±2 mmHg和61±3 mmHg时,这同时引起PrmO2分别降至51±6 mmHg和41±5 mmHg。虽然这些PrmO2的缺氧降低明显小于PaO2的降低,但这种效应可归因于虹鳟鱼血红蛋白 - 氧解离曲线的S形。