Wakahara Kiyoshi, Kobayashi Hiroshi, Yagyu Tatsuo, Matsuzaki Hidenori, Kondo Toshiharu, Kurita Noriyuki, Sekino Hideo, Inagaki Kiyokazu, Suzuki Mika, Kanayama Naohiro, Terao Toshihiko
NetForce Co. Ltd., Taiko 3-1-18, Nakamura, Nagoya, Aichi 453-0801, Japan.
J Cell Biochem. 2004 Oct 15;93(3):437-53. doi: 10.1002/jcb.20160.
The net balance between urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) has been implicated in tumor cell invasion and metastasis. To elucidate the mechanism of the transforming growth factor-beta1 (TGF-beta1)-dependent up-regulation of PAI-1 expression, we investigated which signaling pathway transduced by TGF-beta1 is responsible for this effect. Here, we show (1) nontoxic concentrations of TGF-beta1 up-regulates uPA expression in HRA and SKOV-3 human ovarian cancer cells, (2) TGF-beta1 activates Smads (phosphorylation of Smad2 and nuclear translocation of Smad3) and subsequently up-regulates PAI-1 expression in HRA cells, whereas TGF-beta1 neither activates Smads nor up-regulates PAI-1 in SKOV-3 cells, (3) pharmacological Src inhibitor PP2 or antisense (AS) c-Src oligodeoxynucleotide (ODN) treatment significantly induces TGF-beta1-dependent activation of Smads, leading to PAI-1 synthesis, compared with controls, in SKOV-3 cells, (4) combination of TGF-beta1 and PP2, which activates PAI-1 expression and reduces uPA expression in SKOV-3, results in decreased invasiveness, (5) pharmacological inhibitors for mitogen-activated protein kinase (MAPK) (PD98059) and phosphoinositide-3-kinase (PI3K) (LY294002 and wortmannin) or AS-PI3K ODN transfection do not affect TGF-beta1-induced Smad signaling and up-regulation of PAI-1 expression in SKOV-3 cells pretreated with PP2, and (6) the induction of PAI-1 protein was partially inhibited by an inhibitor of Sp1-DNA binding, mithramycin, implicating, at least in part, Sp1 in the regulation of this gene by TGF-beta1. In conclusion, TGF-beta1-dependent activation of Smad2/3, leading to PAI-1 synthesis, may be negatively regulated by Src, but not its downstream targets MAPK and PI3K in SKOV-3 cells. These data also reflect the complex biological effect of uPA-PAI-1 system.
尿激酶型纤溶酶原激活物(uPA)与纤溶酶原激活物抑制剂1型(PAI-1)之间的净平衡与肿瘤细胞的侵袭和转移有关。为了阐明转化生长因子-β1(TGF-β1)依赖性上调PAI-1表达的机制,我们研究了TGF-β1转导的哪种信号通路介导了这一效应。在此,我们发现:(1)无毒浓度的TGF-β1上调HRA和SKOV-3人卵巢癌细胞中uPA的表达;(2)TGF-β1激活Smads(Smad2磷酸化和Smad3核转位),随后上调HRA细胞中PAI-1的表达,而TGF-β1既不激活SKOV-3细胞中的Smads,也不上调其PAI-1的表达;(3)与对照组相比,药理学上的Src抑制剂PP2或反义(AS)c-Src寡脱氧核苷酸(ODN)处理显著诱导SKOV-3细胞中TGF-β1依赖性的Smads激活,从而导致PAI-1合成;(4)TGF-β1与PP2联合使用可激活SKOV-3细胞中PAI-1的表达并降低uPA的表达,导致侵袭性降低;(5)丝裂原活化蛋白激酶(MAPK)(PD98059)和磷脂酰肌醇-3激酶(PI3K)(LY294002和渥曼青霉素)的药理学抑制剂或AS-PI3K ODN转染并不影响用PP2预处理的SKOV-3细胞中TGF-β1诱导的Smad信号传导和PAI-1表达上调;(6)Sp1-DNA结合抑制剂光神霉素部分抑制PAI-1蛋白的诱导,这表明至少部分地,Sp1参与TGF-β1对该基因的调控。总之,TGF-β1依赖性激活Smad2/3导致PAI-1合成,在SKOV-3细胞中可能受Src负调控,但不受其下游靶点MAPK和PI3K的负调控。这些数据也反映了uPA-PAI-1系统复杂的生物学效应。