Jones Leigh F, Rajaraman Gopalan, Brockman Jonathon, Murugesu Muralee, Sanudo E Carolina, Raftery Jim, Teat Simon J, Wernsdorfer Wolfgang, Christou George, Brechin Euan K, Collison David
Department of Chemistry, The University of Manchester, Oxford Road, Manchester, UK.
Chemistry. 2004 Oct 11;10(20):5180-94. doi: 10.1002/chem.200400301.
The syntheses, structures and magnetic properties of three new MnIII clusters, [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1), [Mn(0O6(OH)2(bta)8(py)8F8] (2) and [NHEt3]2[Mn3O(bta)6F3] (3), are reported (bta=anion of benzotriazole), thereby demonstrating the utility of MnF3 as a new synthon in Mn cluster chemistry. The "melt" reaction (100 degrees C) between MnF(3) and benzotriazole (btaH, C6H5N3) under an inert atmosphere, followed by dissolution in MeOH produces the cluster [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1) after two weeks. Complex 1 crystallizes in the triclinic space group P1, and consists of a complicated array of metal tetrahedra linked by mu3-O2- ions, mu3- and mu2-OH- ions, mu2-MeO- ions and mu2-bta- ligands. The "simpler" reaction between MnF3 and btaH in boiling MeOH (50 degrees C) also produces complex 1. If this reaction is repeated in the presence of pyridine, the decametallic complex [Mn10O6(OH)2(bta)8(py)8F8] (2) is produced. Complex 2 crystallizes in the triclinic space group P1 and consists of a "supertetrahedral" [Mn(III)10] core bridged by six mu3-O2- ions, two mu3-OH- ions, four mu2-F- ions and eight mu2-bta- ions. The replacement of pyridine by triethylamine in the same reaction scheme produces the trimetallic species [NHEt3]2[Mn3O(bta)6F3] (3). Complex 3 crystallises in the monoclinic space group P2(1)/c and has a structure analogous to that of the basic metal carboxylates of general formula [M3O(RCO2)6L3]0/+, which consists of an oxo-centred metal triangle with mu2-bta- ligands bridging each edge of the triangle and the fluoride ions acting as the terminal ligands. DC magnetic susceptibility measurements in the 300-1.8 K and 0.1-7 T ranges were investigated for all three complexes. For each, the value of chi(M)T decreases with decreasing temperatures; this indicates the presence of dominant antiferromagnetic exchange interactions in 1-3. For complex 1, the low-temperature value of chi(M)T is 10 cm(3) K mol(-1) and fitting of the magnetisation data gives S=4, g=2.0 and D=-0.90 cm(-1). For complex 2, the value of chi(M)T falls to a value of approximately 5.0 cm(3) K mol(-1) at 1.8 K, which is consistent with a small spin ground state. For the triangular complex 3, the best fit to the experimental chi(M)T versus T data was obtained for the following parameters: Ja = -5.01 cm(-1), Jb = +9.16 cm(-1) and g=2.00, resulting in an S=2 spin ground state. DFT calculations on 3, however, suggest an S=1 or S=0 ground state with J(a)=-2.95 cm(-1) and J(b)=-2.12 cm(-1). AC susceptibility measurements performed on 1 in the 1.8-4.00 K range show the presence of out-of-phase AC susceptibility signals, but no peaks. Low-temperature single-crystal studies performed on 1 on an array of micro-SQUIDS show the time- and temperature-dependent hysteresis loops indicative of single-molecule magnetism behaviour.
报道了三种新型MnIII簇合物[Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1)、[Mn10O6(OH)2(bta)8(py)8F8] (2)和[NHEt3]2[Mn3O(bta)6F3] (3)的合成、结构和磁性(bta = 苯并三唑阴离子),从而证明了MnF3作为Mn簇化学中新合成子的实用性。在惰性气氛下,MnF3与苯并三唑(btaH,C6H5N3)在“熔融”反应(100℃)下进行,然后溶解在甲醇中,两周后生成簇合物[Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1)。配合物1结晶于三斜空间群P1,由通过μ3 - O2-离子、μ3 -和μ2 - OH-离子、μ2 - MeO-离子和μ2 - bta-配体连接的复杂金属四面体阵列组成。MnF3与btaH在沸腾甲醇(50℃)中的“更简单”反应也生成配合物1。如果在吡啶存在下重复此反应,则生成十金属配合物[Mn10O6(OH)2(bta)8(py)8F8] (2)。配合物2结晶于三斜空间群P1,由一个由六个μ3 - O2-离子、两个μ3 - OH-离子、四个μ2 - F-离子和八个μ2 - bta-离子桥连的“超四面体”[Mn(III)10]核心组成。在相同反应体系中用三乙胺取代吡啶会生成三金属物种[NHEt3]2[Mn3O(bta)6F3] (3)。配合物3结晶于单斜空间群P2(1)/c,其结构类似于通式为[M3O(RCO2)6L3]0/+的碱性金属羧酸盐,由一个以氧为中心的金属三角形组成,μ2 - bta-配体桥连三角形的每条边,氟离子作为端基配体。对所有三种配合物在300 - 1.8 K和0.1 - 7 T范围内进行了直流磁化率测量。对于每种配合物,χ(M)T值随温度降低而减小;这表明在1 - 3中存在占主导地位的反铁磁交换相互作用。对于配合物1,χ(M)T的低温值为10 cm3 K mol-1,对磁化数据进行拟合得到S = 4,g = 2.0和D = -0.90 cm-1。对于配合物2,χ(M)T值在1.8 K时降至约5.0 cm3 K mol-1,这与小自旋基态一致。对于三角形配合物3,对实验χ(M)T与T数据的最佳拟合得到以下参数:Ja = -5.01 cm-1,Jb = +9.16 cm-1和g = 2.00,导致S = 2自旋基态。然而,对3进行的DFT计算表明基态为S = 1或S = 0,J(a)= -2.95 cm-1和J(b)= -2.12 cm-1。在1.8 - 4.00 K范围内对1进行的交流磁化率测量显示存在异相交流磁化率信号,但没有峰值。在一系列微SQUIDS上对1进行的低温单晶研究显示了与单分子磁行为相关的时间和温度依赖性磁滞回线。