Bagai Rashmi, Datta Saiti, Betancur-Rodriguez Amalia, Abboud Khalil A, Hill Stephen, Christou George
Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA.
Inorg Chem. 2007 May 28;46(11):4535-47. doi: 10.1021/ic070106w. Epub 2007 Apr 25.
The syntheses, crystal structures, and magnetochemical characterization of four new iron clusters [Fe7O4(O2CPh)11(dmem)2] (1), [Fe7O4(O2CMe)11(dmem)2] (2), [Fe6O2(OH)4(O2CBut)8(dmem)2] (3), and [Fe3O(O2CBut)2(N3)3(dmem)2] (4) (dmemH=Me2NCH2CH2N(Me)CH2CH2OH)=2-{[2-(dimethylamino)ethyl]methylamino}ethanol) are reported. The reaction of dmemH with Fe3O(O2CR)6(H2O)3 (R=Ph (1), Me (2), and But (3)) gave 1, 2, and 3, respectively, whereas 4 was obtained from the reaction of 3 with sodium azide. The complexes all possess rare or novel core topologies. The core of 1 comprises two [Fe4(mu3-O)2]8+ butterfly units sharing a common body Fe atom. The core of 2 consists of a [Fe3O3] ring with each doubly bridging O2- ion becoming mu3 by also bridging to a third, external Fe atom; a seventh Fe atom is attached on the outside of this core via an additional mu3-O2- ion. The core of 3 consists of a [Fe4(mu3-O)2]8+ butterfly unit with an Fe atom attached above and below this by bridging O atoms. Finally, the core of 4 is an isosceles triangle bridged by a mu3-O2- ion with a rare T-shaped geometry and with the azide groups all bound terminally. Variable-temperature, solid-state dc, and ac magnetization studies were carried out on complexes 1-4 in the 5.0-300 K range. Fitting of the obtained magnetization (M) vs field (H) and temperature (T) data by matrix diagonalization and including only axial anisotropy (zero-field splitting) established that 1, 2, and 4 each possess an S=5/2 ground state spin, whereas 3 has an S=5 ground state. As is usually the case, good fits of the magnetization data could be obtained with both positive and negative D values. To obtain more accurate values and to determine the sign of D, high-frequency EPR studies were carried out on single crystals of representative complexes 1.4MeCN and 3.2MeCN, and these gave D=+0.62 cm-1 and |E|>or=0.067 cm-1 for 1.4MeCN and D=-0.25 cm-1 for 3.2MeCN. The magnetic susceptibility data for 4 were fit to the theoretical chiM vs T expression derived by the use of an isotropic Heisenberg spin Hamiltonian and the Van Vleck equation, and this revealed the pairwise exchange parameters to be antiferromagnetic with values of Ja=-3.6 cm-1 and Jb=-45.9 cm-1. The combined results demonstrate the ligating flexibility of dmem and its usefulness in the synthesis of a variety of Fex molecular species.
报道了四个新的铁簇合物[Fe7O4(O2CPh)11(dmem)2] (1)、[Fe7O4(O2CMe)11(dmem)2] (2)、[Fe6O2(OH)4(O2CBut)8(dmem)2] (3) 和 [Fe3O(O2CBut)2(N3)3(dmem)2] (4)(dmemH = Me2NCH2CH2N(Me)CH2CH2OH = 2-{[2-(二甲基氨基)乙基]甲基氨基}乙醇)的合成、晶体结构及磁化学表征。dmemH 与 Fe3O(O2CR)6(H2O)3(R = Ph (1)、Me (2) 和 But (3))反应分别得到 1、2 和 3,而 4 是由 3 与叠氮化钠反应得到的。这些配合物均具有罕见或新颖的核心拓扑结构。1 的核心由两个共享一个公共体 Fe 原子的 [Fe4(μ3-O)2]8+ 蝶形单元组成。2 的核心由一个 [Fe3O3] 环组成,每个双桥连 O2- 离子通过桥连到第三个外部 Fe 原子也变成 μ3;第七个 Fe 原子通过一个额外的 μ3-O2- 离子连接在这个核心的外部。3 的核心由一个 [Fe4(μ3-O)2]8+ 蝶形单元组成,在其上方和下方通过桥连 O 原子连接有一个 Fe 原子。最后,4 的核心是一个由 μ3-O2- 离子桥连的等腰三角形,具有罕见的 T 形几何结构,且叠氮基团均为端基配位。在 5.0 - 300 K 范围内对配合物 1 - 4 进行了变温、固态直流和交流磁化研究。通过矩阵对角化并仅包含轴向各向异性(零场分裂)对得到的磁化强度 (M) 与磁场 (H) 和温度 (T) 数据进行拟合,确定 1、2 和 4 各自具有 S = 5/2 的基态自旋,而 3 具有 S = 5 的基态。通常情况下,正、负 D 值都能很好地拟合磁化数据。为了获得更准确的值并确定 D 的符号,对代表性配合物 1·4MeCN 和 3·2MeCN 的单晶进行了高频 EPR 研究,对于 1·4MeCN 得到 D = +0.62 cm-1 且 |E|≥0.067 cm-1,对于 3·2MeCN 得到 D = -0.25 cm-1。将 4 的磁化率数据拟合到使用各向同性海森堡自旋哈密顿量和范弗莱克方程推导的理论 χM 与 T 的表达式,这表明成对交换参数为反铁磁性,值为 Ja = -3.6 cm-1 和 Jb = -45.9 cm-1。综合结果表明 dmem 的配位灵活性及其在多种 Fex 分子物种合成中的有用性。