McMurtry M Sean, Bonnet Sebastien, Wu Xichen, Dyck Jason R B, Haromy Alois, Hashimoto Kyoko, Michelakis Evangelos D
Department of Medicine and Pediatrics, University of Alberta, Edmonton, Canada.
Circ Res. 2004 Oct 15;95(8):830-40. doi: 10.1161/01.RES.0000145360.16770.9f. Epub 2004 Sep 16.
The pulmonary arteries (PA) in pulmonary arterial hypertension (PAH) are constricted and remodeled;. They have suppressed apoptosis, partly attributable to suppression of the bone morphogenetic protein axis and selective downregulation of PA smooth muscle cell (PASMC) voltage-gated K+ channels, including Kv1.5. The Kv downregulation-induced increase in [K+]i, tonically inhibits caspases, further suppressing apoptosis. Mitochondria control apoptosis and produce activated oxygen species like H2O2, which regulate vascular tone by activating K+ channels, but their role in PAH is unknown. We show that dichloroacetate (DCA), a metabolic modulator that increases mitochondrial oxidative phosphorylation, prevents and reverses established monocrotaline-induced PAH (MCT-PAH), significantly improving mortality. Compared with MCT-PAH, DCA-treated rats (80 mg/kg per day in drinking water on day 14 after MCT, studied on day 21) have decreased pulmonary, but not systemic, vascular resistance (63% decrease, P<0.002), PA medial thickness (28% decrease, P<0.0001), and right ventricular hypertrophy (34% decrease, P<0.001). DCA is similarly effective when given at day 1 or day 21 after MCT (studied day 28) but has no effect on normal rats. DCA depolarizes MCT-PAH PASMC mitochondria and causes release of H2O2 and cytochrome c, inducing a 10-fold increase in apoptosis within the PA media (TUNEL and caspase 3 activity) and decreasing proliferation (proliferating-cell nuclear antigen and BrdU assays). Immunoblots, immunohistochemistry, laser-captured microdissection-quantitative reverse-transcription polymerase chain reaction and patch-clamping show that DCA reverses the Kv1.5 downregulation in resistance PAs. In summary, DCA reverses PA remodeling by increasing the mitochondria-dependent apoptosis/proliferation ratio and upregulating Kv1.5 in the media. We identify mitochondria-dependent apoptosis as a potential target for therapy and DCA as an effective and selective treatment for PAH.
肺动脉高压(PAH)中的肺动脉(PA)会发生收缩和重塑。它们抑制细胞凋亡,部分原因是骨形态发生蛋白轴受到抑制以及PA平滑肌细胞(PASMC)电压门控钾通道(包括Kv1.5)的选择性下调。Kv下调导致细胞内钾离子浓度([K+]i)升高,持续性抑制半胱天冬酶,进一步抑制细胞凋亡。线粒体控制细胞凋亡并产生活性氧,如过氧化氢(H2O2),其通过激活钾通道调节血管张力,但其在PAH中的作用尚不清楚。我们发现,二氯乙酸(DCA)作为一种增加线粒体氧化磷酸化的代谢调节剂,可预防并逆转已建立的野百合碱诱导的PAH(MCT-PAH),显著提高生存率。与MCT-PAH组相比,DCA处理的大鼠(MCT后第14天开始,每天在饮水中给予80mg/kg,第21天进行研究)肺血管阻力降低,但体循环血管阻力未降低(降低63%,P<0.002),PA中层厚度降低(降低28%,P<0.0001),右心室肥厚减轻(降低34%,P<0.001)。在MCT后第1天或第21天给予DCA(第28天进行研究)同样有效,但对正常大鼠无效。DCA使MCT-PAH的PASMC线粒体去极化,导致H2O2和细胞色素c释放,使PA中层的细胞凋亡增加10倍(TUNEL和半胱天冬酶3活性检测),并减少细胞增殖(增殖细胞核抗原和BrdU检测)。免疫印迹、免疫组化、激光捕获显微切割-定量逆转录聚合酶链反应和膜片钳检测表明,DCA可逆转阻力性PA中Kv1.5的下调。总之,DCA通过增加线粒体依赖性细胞凋亡/增殖比率并上调中层的Kv1.5来逆转PA重塑。我们确定线粒体依赖性细胞凋亡是一个潜在的治疗靶点,DCA是一种治疗PAH的有效且选择性的药物。