Suppr超能文献

耳蜗放大器:内耳中行波的增强。

The cochlear amplifier: augmentation of the traveling wave within the inner ear.

作者信息

Oghalai John S

机构信息

Bobby R. Alford Department of Otorhinolaryngology & Communicative Sciences, Baylor College of Medicine, One Baylor Plaza, NA 102, Houston, TX 77030, USA.

出版信息

Curr Opin Otolaryngol Head Neck Surg. 2004 Oct;12(5):431-8. doi: 10.1097/01.moo.0000134449.05454.82.

Abstract

PURPOSE OF REVIEW

There have been many recent advancements in our understanding of cochlear function within the past ten years. In particular, several mechanisms that underlie the sensitivity and sharpness of mammalian tuning have been discovered. This review focuses on these issues.

RECENT FINDINGS

The cochlear amplifier is essentially a positive feedback loop within the cochlea that amplifies the traveling wave. Thus, vibrations within the organ of Corti are sensed and then force is generated in synchrony to increase the vibrations. Mechanisms that generate force within the cochlea include outer hair cell electromotility and stereociliary active bundle movements. These processes can be modulated by the intracellular ionic composition, the lipid constituents of the outer hair cell plasma membrane, and the structure of the outer hair cell cytoskeleton.

SUMMARY

A thorough understanding of the cochlear amplifier has tremendous implications to improve human hearing. Sensorineural hearing loss is a common clinical problem and a common site of initial pathology is the outer hair cell. Loss of outer hair cells causes loss of the cochlear amplifier, resulting in progressive sensorineural hearing loss.

摘要

综述目的

在过去十年里,我们对耳蜗功能的理解有了许多新进展。特别是,已经发现了哺乳动物调谐敏感性和敏锐度背后的几种机制。本综述聚焦于这些问题。

最新发现

耳蜗放大器本质上是耳蜗内的一个正反馈回路,它放大行波。因此,柯蒂氏器内的振动被感知,然后同步产生力以增加振动。在耳蜗内产生力的机制包括外毛细胞的电运动和静纤毛主动束运动。这些过程可受细胞内离子组成、外毛细胞质膜的脂质成分以及外毛细胞细胞骨架结构的调节。

总结

深入了解耳蜗放大器对改善人类听力具有重大意义。感音神经性听力损失是一个常见的临床问题,初始病理变化的一个常见部位是外毛细胞。外毛细胞的丧失会导致耳蜗放大器功能丧失,进而导致进行性感音神经性听力损失。

相似文献

1
The cochlear amplifier: augmentation of the traveling wave within the inner ear.
Curr Opin Otolaryngol Head Neck Surg. 2004 Oct;12(5):431-8. doi: 10.1097/01.moo.0000134449.05454.82.
3
Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
Hear Res. 1995 Dec;92(1-2):170-7. doi: 10.1016/0378-5955(95)00216-2.
4
The interplay between active hair bundle motility and electromotility in the cochlea.
J Acoust Soc Am. 2010 Sep;128(3):1175-90. doi: 10.1121/1.3463804.
5
Static length changes of cochlear outer hair cells can tune low-frequency hearing.
PLoS Comput Biol. 2018 Jan 19;14(1):e1005936. doi: 10.1371/journal.pcbi.1005936. eCollection 2018 Jan.
7
In vivo outer hair cell length changes expose the active process in the cochlea.
PLoS One. 2012;7(4):e32757. doi: 10.1371/journal.pone.0032757. Epub 2012 Apr 9.
8
Active hair bundle movements and the cochlear amplifier.
J Am Acad Audiol. 2003 Aug;14(6):325-38.
9
Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier.
Nature. 2002 Sep 19;419(6904):300-4. doi: 10.1038/nature01059. Epub 2002 Aug 28.
10
Sound preprocessing by ac and dc movements of cochlear outer hair cells.
Prog Brain Res. 1993;97:21-30. doi: 10.1016/s0079-6123(08)62259-1.

引用本文的文献

3
The relationship between round window and ear canal Cochlear microphonic.
Laryngoscope Investig Otolaryngol. 2022 Nov 25;7(6):2076-2083. doi: 10.1002/lio2.964. eCollection 2022 Dec.
4
Bilirubin Encephalopathy.
Curr Neurol Neurosci Rep. 2022 Jul;22(7):343-353. doi: 10.1007/s11910-022-01204-8. Epub 2022 May 19.
5
Vector of motion measurements in the living cochlea using a 3D OCT vibrometry system.
Biomed Opt Express. 2022 Mar 30;13(4):2542-2553. doi: 10.1364/BOE.451537. eCollection 2022 Apr 1.
6
Noise exposure levels predict blood levels of the inner ear protein prestin.
Sci Rep. 2022 Jan 21;12(1):1154. doi: 10.1038/s41598-022-05131-z.
7
Dual-vector gene therapy restores cochlear amplification and auditory sensitivity in a mouse model of DFNB16 hearing loss.
Sci Adv. 2021 Dec 17;7(51):eabi7629. doi: 10.1126/sciadv.abi7629. Epub 2021 Dec 15.
8
Analysis of Pharmacokinetics in the Cochlea of the Inner Ear.
Front Pharmacol. 2021 May 3;12:633505. doi: 10.3389/fphar.2021.633505. eCollection 2021.
9
Hearing at threshold intensities: by slow mechanical traveling waves or by fast cochlear fluid pressure waves.
Audiol Res. 2020 Aug 6;10(1):233. doi: 10.4081/audiores.2020.233. eCollection 2020 Jul 7.
10
Harboyan syndrome: novel SLC4A11 mutation, clinical manifestations, and outcome of corneal transplantation.
J Hum Genet. 2021 Feb;66(2):193-203. doi: 10.1038/s10038-020-00834-5. Epub 2020 Sep 3.

本文引用的文献

2
Harmonic distortion in intracochlear pressure and its analysis to explore the cochlear amplifier.
J Acoust Soc Am. 2004 Mar;115(3):1230-41. doi: 10.1121/1.1645611.
3
Otoacoustic emissions from residual oscillations of the cochlear basilar membrane in a human ear model.
J Assoc Res Otolaryngol. 2003 Dec;4(4):478-94. doi: 10.1007/s10162-002-3055-1. Epub 2003 Jul 10.
5
Prestin and the dynamic stiffness of cochlear outer hair cells.
J Neurosci. 2003 Oct 8;23(27):9089-96. doi: 10.1523/JNEUROSCI.23-27-09089.2003.
6
Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea.
J Neurophysiol. 1956 Sep;19(5):424-37. doi: 10.1152/jn.1956.19.5.424.
8
ROCK-dependent and ROCK-independent control of cochlear outer hair cell electromotility.
J Biol Chem. 2003 Sep 12;278(37):35644-50. doi: 10.1074/jbc.M301668200. Epub 2003 Jul 1.
10
Cl- flux through a non-selective, stretch-sensitive conductance influences the outer hair cell motor of the guinea-pig.
J Physiol. 2003 Mar 15;547(Pt 3):873-91. doi: 10.1113/jphysiol.2002.036434. Epub 2003 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验